Dense Lissajous Sampling and Interpolation for Dynamic Light-transport

Xiaomeng Liu, Kristofer Henderson, Joshua Rego, Suren Jayasuriya, Sanjeev Koppal

Light-transport represents the complex interactions of light in a scene. Fast, compressed, and accurate light-transport capture for dynamic scenes is an open challenge in vision and graphics. In this paper, we integrate the classical idea of Lissajous sampling with novel control strategies for dynamic light-transport applications such as relighting water drops and seeing around corners. In particular, this paper introduces an improved Lissajous projector hardware design and discusses calibration and capture for a microelectromechanical (MEMS) mirror-based projector. Further, we show progress towards speeding up the hardware-based Lissajous subsampling for dual light transport frames, and investigate interpolation algorithms for recovering back the missing data. Our captured dynamic light transport results show complex light scattering effects for dense angular sampling, and we also show dual non-line-of-sight (NLoS) capture of dynamic scenes. This work is the first step towards adaptive Lissajous control for dynamic light-transport. Please see accompanying video for all the results.

Paper (Optics Express 2021)

For privacy reasons YouTube needs your permission to be loaded.