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Abstract:  Light-transport represents the complex interactions of light in a scene. Fast,
compressed, and accurate light-transport capture for dynamic scenes is an open challenge in
vision and graphics. In this paper, we integrate the classical idea of Lissajous sampling with
novel control strategies for dynamic light-transport applications such as relighting water drops
and seeing around corners. In particular, this paper introduces an improved Lissajous projector
hardware design and discusses calibration and capture for a microelectromechanical (MEMS)
mirror-based projector. Further, we show progress towards speeding up the hardware-based
Lissajous subsampling for dual light transport frames, and investigate interpolation algorithms
for recovering back the missing data. Our captured dynamic light transport results show complex
light scattering effects for dense angular sampling, and we also show dual non-line-of-sight
(NLoS) capture of dynamic scenes. This work is the first step towards adaptive Lissajous control
for dynamic light-transport. Please see accompanying video for all the results.
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1. Introduction

Light transport effects include direct bounces of light to the detector, global light effects
due to multiple reflections, refraction, and scattering in the scene. Capturing the full light
transport enables numerous applications in computer vision and graphics including post-capture
visualization using image-based relighting techniques.

The linear relationship between light source and camera sensor is typically modeled as the
light transport matrix T [1-4]. This matrix maps the illuminating pattern p to the camera image
¢, governed by the equation ¢ = T p. There has been much research in acquiring T for static
scenes, primarily focused on improved capture efficiency [5—10]. Applications include relighting
static scenes post-capture [11], separating direct and global components of light in the scene [12],
and creating dual imagery [7] using Helmholtz’s reciprocity.

However, capturing dynamic light-transport is challenging due to the divergent requirements
of fast capture. Here, the light transport matrix is a function of time T(¢), and usual static light
transport acquisition face additional challenges.

1.1.  Dynamic light transport capture challenges

To capture T(#), researchers have developed high-speed acquisition setups with fast projectors and
cameras. There are however fundamental trade-offs with high-speed capture for dynamic light
transport. For example, high-speed capture, which happens in short bursts (i.e. low exposure),
suggests a focused, bright single spot that is scanned over the scene, such as a “flying spot" [13].
Unfortunately, sequentially scanning the flying spot takes time. Abandoning the flying spot
in favor of flood-lit parallel projected illumination patterns can allow smart, fast sampling [7].
However, we then lose the flying-spot advantage and the spread of energy over the scene reduces
the signal-to-noise ratio (SNR).
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Fig. 1. Fast Flying-Spot Photography setup and mapping from slide coordinates
to Lissajous pattern. In (I), we show our tri-color laser which emits optically
combined red, green and blue lasers. This is reflected off a small, scanning mirror,
creating a narrow pencil or rays, or spot, that is incident on the scene. A color,
high-speed camera allows the capture of the moving "flying-spot", as it is scanned over
the scene by the mirror.II shows the sensor setup of the ray diagram. III shows the
Lissajous scanning pattern and the variables for each scanning dot. IV(a) left, we show
a Lambertian plane we use for calibration. The light-transport of this calibration plane
has been captured, and each column consists of a single bright dot. The centers of each
dot are shown in red in IV(a). Note that these dots form a sinusoidal, Lissajous pattern,
instead of the conventional uniform grid sampling in a slide image. In IV(b) we show
mapping of these uniform projector pixels in blue, and compare them to the dot centers
in red in IV(b) right. To map between the real Lissajous pattern and the desired slide
coordinates, the relative dot distances on this plane are used in weighted nearest
neighbors.

Most previous work in dynamic light-transport has avoided these trade-offs by giving up
illumination resolution and focusing instead on complex, omnidirectional, environment maps.
These “light-stage" methods that use gantry-based setups have been extremely successful for
relighting human faces or human motion [3, 14—16]. Additionally, robust methods exist to capture
slices of the dynamic light transport [17-20].

1.2. Dense dynamic light transport capture with Lissajous sampling

In this paper, we focus on capturing densely sampled full light-transport, with high-resolution
both in the camera and in the illumination, using Lissajous sampling for MEMS-mirror control.
This type of sampling is widely use for conventional imaging applications, such as endoscopy [21],
remote sensing [22] and imaging [23], where MEMS-scanning has enabled a variety of
commercially available portable projectors. In this paper, we investigate the impact of Lissajous
sampling on light-transport, showing results such as video-rate "seeing around corners" and
relighting of dynamic water droplets and caustics.

Recently, Henderson et al. [24] introduced a flying-spot projector that captured dynamic light
transport with moderate illumination resolution, and showed applications such as video-based
relighting and dual videography. Our work builds upon their work [24], but we introduce an
upgraded hardware design as well as new sampling and interpolation algorithms for dynamic
light transport. This paper presents the first steps towards control and sampling of a bright
flying-spot, followed by light-transport interpolation. Our contributions are:

1. We present a simple, new optical setup by combining a microelectromechanical (MEMS)
mirror modulated tri-color laser with a high-speed camera in Sect. 3. This setup provides
higher resolution than recent MEMS-mirror designs [24], and can demonstrate dual-NLoS
imagery of dynamic scenes (Fig. 4). We also show new calibration that provides similar



quality to previous work [25], extended to dynamic scenes (Fig. 2). We show dynamic
relighting and dual imaging for moving objects, glass/liquid scenes and fog effects (Sect. 6).

2. We show the theory of how to adaptively change the scanning pattern, based on a desired
illumination for light-transport capture, by finding a hardware-based Lissajous pattern that
controls the MEMS mirror motion. This Lissajous pattern is fitted to a target pattern in the
dual light transport frame. In Sect. 4, we show that the physical constraints of the second
order mass-spring-damper system allows the existence of an optimal Lissajous pattern that
satisfies these constraints. We validate this theory with simulations.

3. We investigate heuristics for fine-tuning a state-of-the-art video interpolation neural
network [26] for light-transport, showing global effects such as caustics (Sect. 5). We
present real results and simulations showing potential speedups in capture time of up to 8
times without affecting quality, including a real scene at 24 FPS.

4. Finally, we provide evaluations of the approach, such as Table 1 and Fig. 9, which validate
these early steps towards adaptive scanning for light-transport capture.

Organization: For readers desiring high level understanding, this introduction along with
Section 3, particularly Sections 3.1 and 3.2 discuss the design considerations for a flying-spot
projector. For readers focused on the hardware setup and calibration, we refer them to Section 3.3.
Section 4 discusses Lissajous sampling of the scene due to the MEMS mirror including a proof
about an optimal fit to a desired target control pattern. Section 5 then proceeds to describe
interpolation using a deep neural network for recovering missing light transport samples. Finally,
Section 6 shows applications in light transport using our prototype setup.

2. Related work

Efficient light-transport capture. Capturing light-transport has been an active research area [1—
4]. Efficient capture has been shown with compressive sensing [5, 6], adaptive illumination [7],
symmetry priors [8], and low-rank approximations [9, 10]. However, most of these methods have
not impacted light-transport for dynamic scenes. Our strategy of scanning a bright flying-spot
improves SNR and enables dual-NLoS video, which has not been shown with optically parallel,
projected patterns such as those in compressive light-transport [5, 6].

Dynamic light-transport with light stages. Dynamic light transport capture has been shown
in interactive or video frame rates [15,16,27]. These light-stages typically contain programmable
sources arranged in a dome to acquire reflectance fields. These stages trade-off dense angular
resolution over the dome for high-quality capture in a large field-of-view, allowing applications
such as relighting human faces [3, 14], capturing moving actors [15], high-speed photometric
stereo [27], and even 7D information for relighting walking/running humans [16]. For these
applications, omnidirectional ambient illumination (i.e. environment map) is sufficient. In
contrast, we show dense dynamic light transport capture, for relighting caustics and fog (without
requiring its 3D reconstruction [28]).

The paper most similar to ours introduced a MEMS-based flying-spot projector for capturing
dynamic light transport [24]. This paper used a LED source and MEMS-mirror to steer the flying
spot and capture dynamic light transport for a variety of scenes. These results were enabled
by novel calibration and denoising algorithms. Our work extends on these ideas but features a
novel laser source in the hardware design eliminating the need for denoising algorithms, the
demonstrated capture of dual-NLoS videography, and Lissajous sampling and interpolation
strategies for light transport acquisition.

Lissajous sampling: Lissajous patterns are an excellent model for MEMS mirror modulation,
since these are run by actuators in resonance, in silicon. Many MEMS mirror enabled devices,



such as OCT scanning for endoscopy and imaging [21] as well real-time projection [23], use
these ideas. MEMS mirror-based projectors are used in a variety of commercial devices, such as
Microvision ShowWWX, as well as in Mirrorcle LIDARs [29]. In contrast to all these methods,
we investigate Lissajous control for dynamic light-transport capture, with applications such as
seeing around corners and relighting dynamic caustics and water drops.

Dense light-transport slices. Most dense light-transport methods focus on static scenes [7,
10,30]. There has been recent work on capturing dense light-transport components using fast
optical modulation, such as coded exposure [31, 32], digital micromirror devices [18,33,34],
MEMS projectors [35,36], and synced camera-projectors [20,37-39]. Our work seeks to match
the speed of such approaches for full light transport capture. To achieve this, we extend ideas
from laser scanning dual light-stages for static scenes [25] with MEMS-mirror based flying-spot
projectors that suffer from noisy capture [24].

Deep image-based relighting Recent advances in neural relighting and machine learning have
achieved state-of-the-art in image-based relighting. Facial relighting performs realistic portrait
relighting and handles complex shadows, including some involving light stages [40—42]. Neural
networks have been used to estimate light transport matrices [43] with much less measurements,
or perform tasks such as direct/global separation [44]. Our work shares, with these other
methods, the goal of deep interpolation of missing data in the light-transport. Our method is
able to demonstrate this for dynamic light transport, including the global component of the light
transport.

NLoS imaging: Recent non-line-of-sight (NLoS) imaging research [45-49] includes using
ultra-fast lasers [50], low-cost sensors [51],special optics [52], elliptic tomography [53], the light
cone transform [54,55], and Fermat paths [56]. High-speed corner imaging has also enabled
NLoS imaging [57]. Recently NLoS video reconstructions have been shown for retroreflective
scenes [58,59].

In this paper, we focus on the relatively simpler problem of dual-NLoS, where the light-
source directly illuminates the scene, allowing for dynamic dual videography. We exploit
Helmboltz reciprocity [7,60-62], which has been shown for video using epipolar imaging [20].
Our application of dual-NLoS imaging is closest to efforts that reconstruct dual views from
shadows [63] and steady-state-based inversion [64]. Our work is also similar to Musarra et al. and
Nam et al. [65,66].Musarra et al.achieved 0.8 second NLOS reconstruction with a single-pixel
GameraG [65]. Nam et al. used two 16X 1 SPAD arrays to reconstruct live real time videos of
NLOS scenes at 5 fps [66]. In contrast, we also show dual-NLoS color videos of diffuse scenes
and relighting of dynamic caustic effects, but at a faster speed of 7 fps and higher resolution
328x768 as compared to these previous works [65, 66].

3. Capturing dense dynamic transport

In this section, we introduce a novel laser dot scanning optical design that builds upon two
previous light-transport capture designs [24, 25]. Both these designs, and ours, build on Baird’s
flying-spot scanner [67] which allowed live television [13] before the advent of cathode ray tubes.
In contrast to large environmental lighting from light stages [15, 16,27], flying-spot scanners can
achieve dense angular resolution that enables capturing scene lighting effects such as caustics
of glass objects, light scattering in fog, and subsurface scattering at high visual fidelity. The
hardware setup and calibration described here is later used for dynamic relighting and dual
videography for both line-of-sight (LoS) and non-line-of-sight (NLoS) scenes in Section 6.

3.1. Design of flying-spot projectors

Consider a scene being illuminated by a flying spot scanner. We denote the light transport matrix
T [1-4] as mapping the illuminating pattern p to the camera image ¢, as ¢ = T p. Flying spot data
are impulse responses of the light transport matrix T [7,68]: T' = T §;, where ¢; is the impulse



response and the i column of the matrix is 7¢. Now consider a dynamic scene, where the light
transport matrix varies with time #:

(1) =T() p(). ey

Flying-spot projectors capture T(¢) within a time interval At by scanning a flying spot, as an
optical analog to the impulse response ¢;. Flying-spot scanning only works if (1) the spot
brightness is detectable within the time interval Az, and (2) the spot modulation is fast compared
to scene motion within the Ar time interval. We now formally outline these two constraints, and
we assume they are held going forward in all our experiments.

We first model exposure, building on [69], for the capture interval At and sensor gain g, where
N7 are the number of light transport columns, then the requirement for the light source power @
should satisfy:

DB yin -

min N,
8
where 7 is a sensor noise term, I,,;,, is the lowest discernable sensor irradiance, and B,,;,, is a
reflectance term denoting the loss due to scene transport, and is scene dependent.
Secondly, within the At scanning interval, there should be no apparent motion or, equivalently,
the change in the light transport matrix should be less than an acceptable error €:

+n> Imin (2)

IT(r) —T(t+At)| <e. 3)

Eqgns. 2 and 3 are the two constraints necessary for fast flying spot capture of light transport
matrices. In particular for dual-NLoS scenes, B,,;,; can be quite small due to indirect light
reflections, and thus satisfying both constraints can be hard.

3.2.  Flying-spot vs. conventional projectors.

Our flying-spot projector concentrates light in a region, whereas traditional light transport capture
uses parallel light projection [6,7,70]. O’Toole et al. [20] showed that such conventional parallel
projectors, using spatial light modulators, are not as efficient as concentrating the light into a
small region. Formally, flying spot scanning focuses the available illumination energy into a
smaller cone w41 compared to over the entire FOV wgoy of a conventional projector. This
multiplexing of the energy results in a k times increase in scene radiance, given by how much
bigger the FOV is compared to the smaller cone, k = Zf‘vi

In Henderson et al.’s work [24], these ideas were extended for time- -efficiency, noting that
since parallelism gives a conventional projector a speed advantage (say m times faster), it can use
this extra time to increase exposure and reduce noise. This suggests a simple ratio to determine
when flying spot scanning, known to be energy efficient [20], is also time-efficient,

m

<L )

In our hardware setup, we increase k by using a tri-color laser light source combined with
a pentaprism, blending 3 colors of light (RGB) to generate a bright white dot. This reduces
the illumination solid angle wg;,4;; more than the LEDs of Henderson et al.’s work [24] while
allowing dynamic light transport capture, unlike previous work [25]. While this is a simple
hardware enhancement, it results in never-before-seen results such as dynamic dual NLOS
photography as shown in Section 6.



3.3. Fastflying laser spot system

Our system is shown in Fig 1, with the tri-color laser, high-speed camera, and MEMS mirror.
We designed a customized, collimated 5V DC RGB (red-green-blue) combined Class 2 laser
module. The maximum laser output power is 1mW for the three lasers at 450nm, 520nm, and
635nm. The beam size is 1mm with a divergence of 0.8urad, which favors reasonably when
coupled with a Mirrorcle MEMS mirror of 3.6mm-diameter. For high-speed capture, we use a
Photron model SA-X2 color high-speed camera with a 50mm {/0.95 Navitar lens set at /1.2, with
a focal plane set to 0.73m, exposure time 0.018ms, frame rate 50k FPS, resolution 328 x 768.

Calibration for interpolation. We first perform standard high-speed sensing calibration steps
including dark calibration, shading correction, and hot pixel correction. We then replicate the
batching process of previous work [24], using the reset curve of the MEMS mirror path as shown
in Fig 1IV(a). This batches the high-speed camera data into individual flying-spot images. The
i'" flying spot is the corresponding column in the dynamic light-transport Ti(¢) at time ¢. Every
video frame consists of 8k scanning dots, resulting in a 50 X 160 flying spot scanning resolution.

For dual-NLoS results, we require an additional calibration step to find the mapping between
projector and camera coordinates. Conventional dual view imaging [7] uses the transpose
of the light transport T'(r). In other words, each pixel of the dual view is the sum of the
corresponding column of the light-transport matrix at time . However, this mapping only works
for conventional projectors where rectangular pixels are arranged in a grid, whereas our scanning
path is determined by the sinusoidal-like Lissajous pattern of the MEMS mirror.

The indices required for interpolation are found by using a Lambertian backplane, explicitly
placed in the scene at the beginning of each dual-NLoS experiment, to avoid synchronization
complications between MEMS mirror and camera across experiments. We manually identify six
point correspondences between projector pattern and camera image to apply standard homography
estimation techniques as shown in Fig 1IV(b). Due to this homography, every flying dot location
(and matching light-transport column) is mapped to a location on the calibration plane, as a series
of correspondences.

This mapping also helps sub-sampling, explained in Sect. 6, which creates gaps in the light
transport. Consider a flying spot position not captured, due to subsampling, which corresponds to
a missing light-transport column. We map the missing flying spot position to the calibration plane
and compute weights to nearby measured flying spot positions along the calibration plane. We
apply either weighted nearest neighbors or deep interpolation (described in Sect. 5) to combine
the light transport columns corresponding to these positions to obtain the missing data.

Limitations of scanning. Based on the limitation of the current hardware, the MEMS mirror
we use can only scan a relative small angle of the dynamic scene (+5.5° horizontally and +1.375°
vertically). This limits our current maximum field-of-view of the system. However, additional
optics could be applied to expand the scanning range. An ultra wide-angle fish eye lens would
help extend the angular range of the system, but additional calibration algorithm would be needed.

4. Control of light-transport capture

In the previous section, we discussed how we could increase the scene radiance multiplier, k, via
a brighter laser source to increase the time-efficiency 7' of the system. In this section, we drive
the MEMS mirror faster, reducing the quantity m in the system.

Our idea is to sample only a subset of light-transport 7' columns by skipping certain areas
of the scene with the flying spot. This sparse sampling would leave gaps, which we would
interpolate back in post-processing as explained in Sect. 5.

Our method assumes a target control pattern M that correspond to how important they are
to be sampled. This target control pattern could come from another sensor (thermal or event
cameras) or from a vision algorithm. We now explain how our hardware setup offers the unique
ability to have control over the MEMS mirror to design the scanning pattern of the flying-spot,



Optimal Lissajous sampling for light-transport. Fast flying-spot scanning requires running
the MEMS mirror at or near resonance. Unlike a conventional projector, the flying dot is
controlled by the angle of the MEMS mirror. It has been shown that this angle can be represented
as different Lissajous patterns [23], parameterized on a plane perpendicular to the optical axis at
unit distance away from the mirror. Our system captures the light-transport at time ¢ over the
period f1 € (,t + At) in the Lissajous pattern given by

x(tp) = Asin(wp tp +¢), y(tL) = Bsin(w, 1), )

where A and B are the amplitudes of the driving sinusoids of the Lissajous pattern, wy,, are
the driving frequency of the MEMS miirror in the horizontal and vertical direction respectively,
and ¢ is the phase difference between these. Thus our goal is to find a set of parameters
I = (wp, wy, P, A, B) to realize a Lissajous pattern L(IT) = (x(¢1), y(f1)) to realize sampling
patterns for the scene. In Section 5, we then discuss how to use either nearest-neighbor
interpolation or neural networks to recover the missing light transport columns that are not
sampled by this pattern.

Suppose we are given a target control pattern M (x, y), defined on the virtual plane that maps
R? — [0, 1], which represents the probability of that (x, y) location being sampled. We then
define the overlap measure E,yer1qp for a given Lissajous pattern II as follows:

E(Movertap = / M (x(ir), y(t1))dxdy ©)
L(IM)=(x(tr),y(tr))

We now present the following proposition, given an assumption on the continuity of the target

control pattern, that there exists an optimal Lissajous pattern which is possible in our MEMS
mirror scanning scenario.

Proposition 1. Assume that M is a continuous function. Then there exists at least one Lissajous
pattern Ilx such that the overlap measure E,yeriap is maximized.

Proof sketch. First we show that the overlap measure E(II)oyeriap i continuous. Then we
show that certain physical qualities of MEMS mirror-based scanning imply the domain for this
measure, II, is bounded. Since we show a continuous measure E (Il)oyeriap With a bounded
domain I, the proof follows from the extreme value theorem.

Proof. Part 1: E is continuous. We assume M is a continuous function, which is to say, it
is Riemann integrable on a bounded domain. Now consider M (x(¢1), y(¢.)). If the domain
(x(tp),y(zr)) is bounded, then M (x(tr),y(tr)) is Riemann integrable too. The domain
(x(t),y(tr)) comes from the Lissajous function Eq. 5 which, due to sine functions, is bounded
[-1,1]. Therefore M(x(tr),y(tr)) is Riemann integrable, and the integral of a Riemann
integrable function is continuous. Therefore the overlap measure E (II)oyer1qp iS continuous.
Part 2: 11 is bounded. We show that IT degenerates into three parameters with bounded domain,
for the MEMS mirror setup. Most 2D MEMS mirror resonant scanning can be simplified as a
2nd order mass-spring-damper system. This means that each axis of the mirror has a resonant
frequency, wpo for the horizontal axis and w,q for the vertical axis.

Note that we do not have to drive the MEMS at these frequencies, but at any driving frequencies
in the horizontal and vertical, wy, and w, respectively. However, this impacts the amplitude
of the scan. Therefore, instead of being two free parameters, the amplitudes A and B of
the MEMS mirror’s Lissajous pattern are determined by the system transfer function of the
mass-spring-damper system at these resonant frequencies,
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where Qj, and Q, are physical factors relating to the fabrication quality of the MEMS mirror.
Our key observation is that the only non-resonant driving frequencies that we will consider are
greater than the resonant frequency, and we might take the hit on the loss in amplitude if the
overlap on the desired pattern M worked in our favor. Therefore, rewriting,

(wh0)2
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Note that if we specify k, = =2 and kj, = “’Z then k,, kj, € [0, 1] because we always want

faster MEMS motion to end w1th1n the time period Af. Thus the numerators of A, B are < 1.
For the denominator, we note that there is no choice of wy,_,, which causes a pole in the transfer
function (definition of quality Qp . ), and thus A, B are finite quantities and thus bounded.Also,
due to sinusoidal periodicity, the phase ¢ € [0, 2x]. Finally, wy, , are bounded due to hardware
parameters to some max frequency possible by the mirror. Therefore the domain (x, y) = L(II)
is bounded as IT is bounded.

Conclusion: We thus note from Parts 1 and 2 of the proof that the overlap function Eo,¢r1ap (IT)
is continuous on a bounded domain. Therefore by the extreme value theorem, there exists at least
one optimal Lissajous pattern ITx such that E,¢1qp (I1*) is maximized. O

Scope: The above proof tells us that for a given target pattern (represented in continuous
probability), there is a best fit Lissajous pattern that exists. It does not tell us how good this
overlap is, nor the discrete approximation error when M (x, y) becomes binary labels. In practice,
in Sect. 6, we have noticed relaxing these assumptions does not affect performance and we utilize
these optimal Lissajous patterns to perform light transport subsampling.

5. Light transport interpolation

In the previous subsections, we discussed improving the ratio 7 in our favor by increasing k with
a tri-color laser and reducing m with a custom sampling pattern. We now discuss a subsequent
interpolation step to recover those missing column information from the custom pattern. This
has two advantages: it enables the faster scanning of the scene discussed previously as well as
allows fewer images stored at capture time.

There are several existing methods for interpolating between the columns (or equivalently dot
images) including nearest-neighbor and classical optical flow. In fact, we show later that the
nearest-neighbor method is particularly effective for dual-NLoS sampling where global light is
so weak that any further processing on the images can distort the dual result. However, complex
lighting effects such as global interreflections or caustics and/or geometry boundaries such as
non-planar surfaces, occlusions, and shadows will deform the flying spot to change shape in that
region. Thus interpolation becomes more challenging for these methods.

To overcome these challenges, we utilize a modern state-of-the-art neural network for video
interpolation from previous work [26] to interpolate missing columns of the light transport
matrix. We fine-tune this network on a previous frame’s light transport matrix and then deploy the
network at test time for future frames. We show how this network can outperform both traditional
Farneback optical flow [71] as well as FlowNet2.0 [72] in estimating light transport columns,
particularly for global light for line-of-sight (LoS) scenes. The disadvantage of fine-tuning is that



it is required for each new scene. However fine-tuning only takes a few epochs when initialized
with pretrained weights from previous work [26].

Network architecture. We adopt the network from [26] to use as our network architecture
for frame interpolation (which we entitled ZSM). This network interpolates between any two
frames by extracting visual features, then uses deformable convolutions to help temporally
interpolate these features, before feeding both the interpolated features and the original frames
into a bidirectional LSTM to output the final interpolated frame Xiang et al. [26]. We do not use
the final upsampling layer from the original network in our implementation.

To interpolate between two column images with indices i and j, we utilize a simple binary
search tree procedure to fill in the missing indices between i and j. The network first interpolates
the midpoint k = mid(i, j), then ky = mid (i, k), k, = mid(k, j) in the second pass, and so on
until all interpolations are complete. Since the flying spot travels in a linear fashion, typically i and
J lie on an approximately horizontal line and can be interpolated using our method. Depending
on the pattern, as in Figure 8, we perform vertical interpolation to fill the gaps.

This ZSM network was trained on everyday scenes, and thus we investigated whether the
network could generalize to flying spot images taken from our setup. In Section 6.2, we
show the results of these experiments which demonstrate the need for fine-tuning the network,
particularly on interpolating global light effects such as caustics. To fine-tune the network, we
require additional losses to help improve performance. We utilize both an MSE loss as well
as a perceptual loss [73] using a pretrained VGG-19 [74] network to extract features ¢(/) of
a flying-spot image: Lpercep (1, I = ||¢(I) — ¢(I)|)?, where I is the network output and I is
the ground truth flying spot image. In training, we assign loss weights of 1.0 for the MSE loss
and 0.01 for the perceptual loss. Section 6.2 shows that our fine-tuned network trained on these
losses can interpolate complex light transport effects.

6. Experimental results

Capture details. All scenes were captured with the mirror scanning +5.5° in the horizontal
and +£1.375° in the vertical at 50,000 samples/sec, and with the Photron SA-X2 color camera at
50,000 FPS. For line-of-sight (LoS) scenes, the target was placed in direct view of light-source
and camera. For dual-NLoS scenes, we used a diffuse v-groove where the projector targeted one
side of the v-groove where the object was located, and the camera captured the other side. Thus
the camera did not have the object visible in its image, but the illumination directly hit the object.

LoS results. In Fig. 2, we show four LoS scenes obtained by our system. These scenes
include objects showing sub-surface scattering (such as a candle), caustics (water droplets and
glass), and vapor (due to dry ice in liquid). We have captured the full light transport of each
dynamic scene, shown by the dual view and relighting results.

We obtained similar illumination data to Henderson et al. [24] through their authors’ website,
allowing qualitative comparison. Other than a simple thresholding scalar, we do not perform any
of the complex denoising of previous paper [24], despite having brighter results. In Fig. 2I(a-b)
the dual and relighting are consistent through thick glass refraction. In Fig. 2II(a) the shadow of
the water droplets reveals a large gap that is reproduced in the dual in Fig. 2(b). Other effects
include radial caustics in Fig. 2III and dense fog relighting in Fig. 2IV produced by dry ice in
colored liquid.

The quality of our dual images also shows the utility of weighting light transport columns
rather than hole filling in the image domain. The dual quality shows the dense capture of projector
resolution, but we also encourage the reader to zoom in onto the water droplet and glass caustics,
where colorful effects show the dense resolution of the illumination. This is in contrast to results
by Debevec [75], where such caustics are not shown for dynamic scenes. In Fig. 2I-II(b) in
particular, each streak seems to be illuminated by a flying spot, resulting in visually appealing
results.
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1I(a) Hand and Water (floodlit and dual)

IV(a) Fog and Glass (floodlit and dual) IV(b) Fog and Glass (relighting)

Fig. 2. Real Line-of-sight results. Here we show floodlit, dual and relighting results
for four dynamic scenes. Please see the supplementary video. In (I) we show a wax
candle placed in a liquid-filled cup. In (II) we show water droplets falling off fingers.
In (III) we show a toy being rotated, and in (IV) we show fog-like vapors from dry-ice
placed in a cup containing colored water. Note the caustics in the relighting, and the
shadows/specularities maintained in the dual views.

Comparisons to Henderson et al. [24]: Our hardware design has improved the brightness in
the light source as well as better overall SNR in the capture of the dot images. The improved
design uses a brighter laser which achieves 625 Lux, while Henderson et al. used 14.51 Lux [24].
Henderson et al. only had a dot size of 3.6mm, while our laser generates a much more parallel
light ray to create smaller dot (0.9mm in diameter @ 1m), making the angular resolution as small
as 0.103°. Computing the SNR for a single dot image for comparison, our system achieves 51dB,
which is more than twice of Henderson et al.’s 21dB. This also explains why extensive denoising
algorithms were necessary in their system to achieve suitable visual results.

Fig. 3 shows qualitative comparisons of our approach to that in Henderson et al. [24]. Note
that these are not exact comparisons, since the scenes are different and the experiment parameters
could be different (such as glass thickness). We encourage the user to watch our supplementary
video and compare the results over the entire scene. Given these caveats, we note that the use
of a bright, tri-color laser provides natural caustics that do not suffer from the hard boundaries,
created by complex denoising in their work [24]. Further, when comparing the fog scenes, our
method provides denser sampling without dark/bright stripes (due to smaller angular extent of the
laser) and a brighter, more realistic vapor cloud image, showing dense and wispy regions of fog.

NLoS results. Unlike most NLoS efforts [45-51], we work on the simpler dual-NLoS problem,



(1) Our Method (1) Henderson et al.

Fig. 3. Qualitative Comparison to [24]. Here we show qualitative comparisons
between our method, and that of [24], for scenes with caustics and specular
interreflections. Note that our results occurs after a simple thresholding (three numbers
for RGB), whereas the [24] is the output after a complex denoising process. Note that
our caustics look bright and natural due to the use of a laser source. The choice of LED
and denoising in [24] results in masked caustics.
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I(c)Dual views of
obstructing card

I(a) Occluded glass cup  I(b)Camera views glass cup

"

lii{a) Camera view gets occluded  |ji(b)projector views unoccluded  1V(a) Camera view gets occluded IV(b)projector views unoccluded

Fig. 4. Real Dual NLoS results. (I) Pouring blue liquid in I(a) is shown with camera
and dual views I(a-b). In II the camera views the scene through falling water II(a-b),
and the card textures are unscrambled with caustics caused by a virtual source behind
the waterfall II(c). III and IV show more dual scenes, and IV shows a view through
thick refractive glass that causes distortions. Please see supplementary video.

where the light-source directly illuminates the scene, but the camera is occluded. While previous
work has enabled video reconstructions [58, 59] for retroreflective scenes, solving dual-NLoS
allows color, video, high-resolution NLoS imaging for the first time. In Fig. 4I-1(a), we show
one frame in ambient illumination, for the reader’s benefit. The rest of the experiment occurs in
darkness to maximize the SNR of the measured data. Every scene in the experiments is placed
between two non-glossy Lambertian planes (i.e. a diffuse corner).

Fig. 4(I) shows an experiment where a blue liquid is poured into an occluded glass. Note that
in the camera view, the glass is occluded by the playing card. Refractive effects due the glass and
liquid are visible, but the glass itself is only visible in the dual view, where the edge of the glass
and the bubbles in the poured liquid are clearly visible.

Fig. 4(IT) shows a stack of playing cards being revealed, one-by-one, by dropping the topmost
card. The entire scene is viewed through a transparent glass with water flowing over it. The
flowing water distorts the camera view, but since the projector directly illuminates the scene, the
light-transport captures all these effects, which can be inverted to produce the cards. Note that
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Fig. 5. Simulated Lissajous subsampling on real NLoS data. Here we show
Lissajous simulations validating our Proposition 1. Using the ground-truth transport
(D), Lissajous patterns with fit to spatio-temporal edges (II). The best fit (IIT) was used
in nearest neighbor interpolation (IV) and was found by grid-search over the Lissajous
parameters, visualized in increasing order of overlap (V).

cards appear illuminated through water, creating dual caustics.

Fig. 4(IIT) shows an experiment where a playing card is being rotated in and out of view. When
the playing card is edgewise to the camera, only diffuse reflections from its surface are visible.
However, since the projector directly illuminates the camera, the dual view always sees the
playing card clearly. Finally, Fig. 4(IV) shows cards viewed through thick, refractive glass. The
geometry, refractive index, and location of the glass pieces are unknown, but the projector-view
image can also be obtained by inverting the effects that the light-transport captured.

6.1. Light transport Lissajous simulations

In Sect. 4 we discussed the selection of a Lissajous pattern, given a desired sampling pattern.
Here we show simulations on the NLoS scenes that we discussed earlier. We use a target
illumination pattern M that prefers intensity edges in the projector space, i.e. either spatial or
spatio-temporal edges of the dual image. Intensity edges in the dual space tell us how differential
changes in the flying spot at some location influenced the camera image. Large changes (i.e.
strong dual edges) are places where we need dense illumination sampling, and a lack of edges
(i.e. uniform intensities in the dual image) are places which could be approximated by, say,
nearest-neighbor interpolation.

Dual edge detection involves thresholding the gradients of spatio-temporal dual video. This
creates a target pattern M (x, y) where the edge strength is over some threshold e4,,;. We note
that the desired edges can only be calculated knowing the full light-transport 7' to form the dual
image. We solve this problem by using previous frames as proxies for the current light transport
and diffusing edges to compensate for motion.

To perform this algorithm, we first find 3 consecutive dual images (I, I», I3), and store them
in grayscale as a 3D matrix G (x, y,t). We then compute directional gradients of this 3D matrix,
denoted G, Gy, G;. We compute the maximum of G, G, G, along the time dimension, and

then compute the magnitude of the 3D gradient image (I = \/G% + G3 + G2. We perform edge
detection on this gradient image, and then optimize different Lissajous patterns to this image until
selecting the one with the best overlap score. To determine the subsampling which corresponds
to this pattern, we utilize our homography between projector and camera to map each non-zero
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Fig. 6. Simulated uniform subsampling for real LoS data. Here we show results on
fine-tuning a state-of-the art video interpolation method ZSM [26] for flying spot
images. The ground-truth (GT) in (I) is sub-sampled by 12.5% (II). Compared to
optical flow methods (III-IV) and the pretrained model, fine-tuning with our loss
heuristics produces better results in the caustic insets. We used a third frame, not

shown, for fine-tuning.



Lissajous pixel in that optimized pattern to their corresponding dot image indices (or equivalently
columns of the light transport matrix).

We show our Lissajous fit simulations in Fig. 5. To find the resonant frequencies wpo, w,o we
fit a dense Lissajous pattern to the 100 x 160 projector resolution. Since Proposition 1 guarantees
a good fit, multiple optimization techniques are possible. The fact that the ratios ky, k, are
bounded [0, 1] and the phase difference ¢ € [0, 27] allowed us to perform a grid search to find
the best fit. Warping the edges detected using light-field-based optical flow could give better
results [76] and remains an avenue of future work.

Once we compute the Lissajous patterns in Fig. 5(III), we then use our homography to
determine what columns from the light transport should be subsampled. Our subsampling
performs well with simple nearest-neighbor interpolation as shown in (IV) with most of the
details of the dual-frame being recovered.

6.2. Light transport interpolation results

Implementation details. Our network architecture has the same layers and parameters as in
Xiang et al. [26] but without the last upsampling layer. We train on a 2080Ti GPU with a learning
rate 1 = Se — 4 using the ADAM optimizer. The network takes approximately 12 hours to
converge, and at test time, interpolation takes around 1-2 hours per light transport matrix 7 for a
given frame, utilizing the binary search tree procedure described earlier.

Main results. We conduct two types of experiments for interpolation: (1) simulated
subsampling post-capture for real data to enable comparison to ground truth at a higher sampling
rate (Figs. 6 and 7), and (2) real Lissajous subsampling performed with our hardware setup
without ground truth (Fig. 8). The former experiments allow us to compare different subsampling
strategies and quantitatively evaluate performance, while the latter shows real experimental
proof-of-concept on our current hardware setup. Since MEMS mirrors need to operate at
resonance for high speed operation, Lissajous subsampling is used throughout the paper as it
is most physically feasible for high-speed patterns with the current hardware setup. However,
we do show a qualitative comparison of simulated subsampling methods such as uniform and
random subsampling in the Supplemental Material (Fig. S5).

In Fig. 6(I) we show ground-truth (GT) of two frames in a LoS floodlit video, and in Figure 6(II)
we show the results for simulated subsampling of the light transport columns uniformly by
a factor of 16. Caustic effects in the inset (third row) are affected and the Lambertian plane
shows Moire effects. In Fig. 6(II-IV) we show interpolation with conventional optical flow
methods [71,72]. The third row insets show that Farneback and FlowNet2.0 perform badly on
caustics, probably due to generalization error since flying spot images are qualitatively different
from what FlowNet2.0 is trained on.

Using the pretrained network from Xiang et al. [26] as an off-the-shelf frame interpolation
method, we show the results of subsampling the light transport columns uniformly by a factor
of 8 in Fig. 6(V). Note how at 12.5% subsampling, the interpolation recovers the direct light
transport columns particularly on the back Lambertian plane, but is missing several global light
effects such as the caustics of the glass. As described in Sect. 5, we performed finetuning with
an MSE and perceptual loss on a prior frame of a scene’s dynamic light transport to enhance
performance. The prior frame was immediately preceding the frame in the first row of Fig. 6,
but more than 10 frames behind the second row frame. As shown in Fig. 6(VI), the network
interpolates global lighting effects such as interreflections and caustics at high visual quality.

In Figure 7, we simulate a hardware-based Lissajous sampling for our captured data and
subsequent interpolation using the pre-trained network. As we can see, the Lambertian plane and
glass caustics are recovered by the network. This is an important example because the scanning
pattern is physically realizable in the hardware setup.

Finally, in Fig. 8, we show a real scene captured with a real Lissajous pattern. Due to the
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Fig. 7. Simulated Lissajous sampling on real LoS data. Here we show results for
LOS interpolation for Lissajous pattern sampling. The dual image (I) of the previous
frame is used to detect the edge map in (II) used to simulate the best fit indexes for a
lissajous pattern simulation (III). The sampled indexes in the floodlit image (IV) show
lost dots along the Lambertian plane and reflections in the glass. The network
interpolation (V) is able to recover most of the Lambertian plane and partially recover

reflections in the glass compared to the ground truth floodlit image (VI)

hardware limitations of our setup, we only used a single pattern for the entire capture. The gaps
in the light-transport are never captured, and we enable 24 FPS (i.e. near real-time) capture of
the scene. This is an improvement over the 5-7 FPS results we get for all other real scenes in
this paper as well as the 6 FPS of [24]. In the figure, we show interpolation using the pretrained
network from [26], where the missing light transport information is interpolated. Please see the
supplementary video for more of this interpolation result.

6.3. Quantitative evaluation of transport interpolation

In Table 1, we evaluate the interpolation using the light-transport for the scenes described
qualitatively in the previous section. For each method, we randomly selected 100 pairs of columns
in the light transport matrix, and interpolated a column in between this pair. We compared the
interpolated light transport column to the ground truth using both PSNR and SSIM metrics.

Note that the fine tuning heuristics, represented by ZSM-FT in the table, outperform traditional
optical flow methods by 3-4 dB in PSNR. Furthermore, the fine-tuning does better that both
network-based optical flow (Flownet2) and the original pretrained weights of ZSM.

Finally, in Fig. 9, we show an ablation study that concretely supports our hypothesis that
sparse flying-spot photography, improving the ratio in Eq. 3.2, is the right choice over parallel
projection, given good interpolation.

In the figure, we conduct two experiments on the light-transport used in the qualitative results
in the previous section. The first uses the PSNR metric and second uses the SSIM metric. In each
experiment, we follow the change in quality (compared to ground truth) of the interpolation in
two scenarios. The first scenario is the interval, or distance between the interpolated column and



(1) Real, 24FPS input floodlit frames (1) Interpolated results with ZSM

Fig. 8. Real Subsampling Experiment. In (I) we show a difficult scene captured with
real Lissajous pattern sub-sampling interpolation, i.e. light-transport gaps are never
captured, that has a frame rate of 24 FPS. In (II) we show recovery of both the
lambertian back-plane and a frame with the glass with red liquid.
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Fig. 9. Sampling Interval and Noise Studies. Here we show (a) PSNR and (b) SSIM
evaluations of how the interpolation breaks down across two factors. The first is
interval, or the angle between two flying spots (or equivalently distance between

column indices on a single row) whose midpoint is interpolated. The second is noise,

as a proxy for illumination brightness, where the intensity of the flying spot is reduced,
decreasing SNR. The key point here is that the neural network interpolation falls

linearly with interval compared to noise which falls non-linearly. In other words, for
the illumination power budget, focusing energy into a flying-spot is preferred to

parallel illumination, as long as neural network interpolation provides good accuracy.



its inputs. The second is image noise, which acts as proxy for illumination power, and increased
noise means the light-source (i.e. our tricolor laser) is reduced in power.

Each experiment shows the same pattern. The fall-off in quality when the distance between the
interpolated column and its input pair is near-linear, where the fall-off in quality due to reduced
illumination energy (modeled as noise) falls off non-linearly.

In other words, flying-spot photography is successful on two fronts First, it improves the
ratio (Eq. 3.2) in being fast and reducing the number of captured samples. Second, using the
state-of-the-art neural network interpolation, the large gaps between sparse flying-spot patterns
have less error that smaller gaps for a dimmer light source, such as a parallel DLP or LCD
projector of the same wattage as the tri-color laser.

Table 1. Quantitative comparison of interpolation methods.

Farneback Flownet2 ZSM  ZSM-FT
PSNR (dB) 36.68 37.48 40.17 41.73
SSIM 0.9883 0.8792 0.9910  0.9938

7. Conclusion and limitations

We present a new hardware setup for flying spot light transport capture which utilizes a tri-color
laser. We describe calibration and implementation details and demonstrate numerous light
transport applications, including color dual-NLoS videos for the first time in the literature. We
then show how adaptive control of the MEMS mirror and scanning pattern can yield even more
time speedups for scanning. Finally, we show missing light transport columns can be interpolated
to achieve speedup without sacrificing visual quality.

For future work, we are building a new system allowing real-time Lissajous adaptive control
and combining sampling/interpolation strategies in hardware for end-to-end learning. This paper
is the first step in a promising new direction for adaptive flying-spot scanners in computer vision
and graphics.The tricolor laser is bright and focused when compared to the LED light-source
in [24]. While each laser individually is safe, the overall source is not eye safe.In the future,
we hope to make it eye safer by pulse width modulation over wavelength. The strange color
artifacts, as seen in the water droplet example, will need to be fixed as well. While we captured
the sparse flying spot images in full resolution, the efficiency could be improved by applying
adaptive camera capturing strategies.
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