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ABSTRACT

Event-based cameras, known for their asynchronous detec-
tion of pixel brightness changes, have proven very successful
in robotic vision and autonomous navigation applications for
which depth estimation is crucial for enhancing downstream
robotic localization and mapping. However, these tasks are
often ill-posed and challenging, leading most state-of-the-art
methods to rely on deep learning models for depth predic-
tions. This reliance limits generalization to new scenes or
camera parameters beyond the training datasets. In this pa-
per, we present a conceptually different approach to depth es-
timation for event cameras inspired by single-shot lightfield
capture and epipolar plane images (EPIs). We propose a ro-
bust sparse depth estimation pipeline based on Hough line de-
tection on EPIs generated from event data. We demonstrate
multi-view monocular event depth estimation by building a
prototype with an event camera on a linear rail, demonstrat-
ing more accurate and generalizable performance compared
to learning-based monocular and stereo event methods.

Index Terms— Event-based Cameras, Depth Estimation,
Computational Imaging

1. INTRODUCTION

Event cameras represent an innovative technology for visual
perception with their low-power consumption, high dynamic
range, and high temporal resolution. These sensors depart
from conventional frame-based cameras by asynchronously
detecting changes in brightness at the pixel level, termed
“events”. As a result, event cameras have found applications
across diverse fields [1], including robotics, autonomous ve-
hicles, surveillance systems, and augmented reality, where
real-time sensing and robustness to motion are paramount.

Depth estimation stands as a crucial sub-problem in
event-based vision systems, facilitating scene understand-
ing and enabling applications such as obstacle avoidance,
object tracking, and 3D reconstruction. Traditional depth
estimation methods have primarily relied on stereo matching
or monocular cues which can be challenging for event cam-
eras. Recently, new deep learning techniques have shown
promise in generating sparse or dense depth predictions, but
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often struggle to generalize and exhibit lower-accuracy on
new scenes and camera parameters that are different than
the datasets they are trained on. Further, they may require
substantial computational resources for training and infer-
ence, limiting their applicability in environments that require
reliable and accurate depth estimations.

In this paper, we propose a novel capture and depth es-
timation approach tailored specifically for event cameras,
circumventing the limitations associated with learning-based
methods. Our method leverages epipolar plane images (EPIs)
derived from light field photography to extract depth infor-
mation from event data. This approach offers simplicity and
robustness, capable of extracting depth lines corresponding
to sparse scene points directly from EPI images. We conduct
evaluations of our proposed method against state-of-the-art
event-based depth estimation, demonstrating its efficacy and
robustness across various examples. Through the contribu-
tions in this paper, we aim to introduce EPIs for event sensing
and pave the way for more efficient and reliable visual per-
ception systems.

2. RELATED WORK

Monocular Depth Estimation from Events. Recent ad-
vancements in monocular depth estimation for event cameras
have significantly enhanced the capabilities of event-based
vision. Deep learning approaches have been shown to pre-
dict dense depth maps from event streams [2]. The spatio-
temporal clustering method proposed by [3] uses real-time
motion analysis on event-based 3D vision to extract depth
information. Similarly, [4] presents a method for recon-
structing 3D shapes using event data. Combining events with
other modalities has also shown to be useful when combined
with traditional frame-based methods in [5] to improve acc-
curacy and robustness of monocular depth estimation through
their developed recurrent asynchronous multimodal network,
and with polarization information in [6] to estimate depth.
Monocular methods have also been used for depth and 3D
estimation with structured light [7, 8], and neural rendering
fields (NeRFs) [9, 10].

Stereo Depth Estimation from Events. Stereo depth
estimation for event cameras has similarly seen significant
progress through various innovative approaches. Early work
explored 3D reconstruction using stereo neuromorphic sen-



Fig. 1. Our proposed event depth estimation pipeline using multi-threshold Hough line detection to extract sparse depth maps.
For n-frames, each row is stacked into an EPI, denoised, and passed through the multi-threshold line detection. The depth is
then determined by the slope of the detected lines.

sors [11], Building on this, Andreopoulous et al. [12] devel-
oped a low-power, high-throughput, fully event-based stereo
system, demonstrating the feasibility of efficient stereo depth
estimation with event cameras. Zhu et al. [13] proposed
a real-time, time-synchronized event-based stereo method.
Ghosh and Gellego [14] introduced a fusion-based approach
to enhance depth estimation accuracy using multiple event
cameras. Deep learning-based methods for stereo depth es-
timation using event sequences have been proposed [15, 16].
Combining intensity images with event data has also been
proposed for stereo methods [17, 18].

Some previous work has also been done with Hough
Transform-based methods for event camera tracking. Glover
et al. [19] use the Hough Transform to detect circular event
objects for ball tracking, while [20] Tschopp et al. use a
double Hough-based algorithm to detect vertical poles for
tracking and mapping of railways.

3. PROPOSED METHOD

Epipolar Plane Image (EPI). A two-dimensional represen-
tation of a three dimensional scene can be obtained using the
structure of an epipolar plane image (EPI) [21]. These are
constructed by aligning the rows, or horizontal scan lines,
of multiple images captured from different views along an
epipolar line. For multiple viewpoints, linearly spaced along
a plane, an EPI is formed by taking a row from each of the
images and stacking them over each other. The image that
this stack forms allows us to visualize disparities for a point
in the scene across the different viewpoints in the form of di-
agonal lines corresponding to the pixel location of a scene
point/feature through the shifted views. A point in the scene
close to the camera will have a large disparity or line with
a small slope, closer to a horizontal line, while a point far
away from the camera will have a line with a large slope and
be closer to a vertical line. The planar viewpoints that are

stacked to form EPIs can be captured using multiple differ-
ent methods. A 1-D camera array can simultaneously capture
viewpoints of a scene, or similarly a single camera sliding
along the planar rail can be used where viewpoints are tem-
poral markers of the video as is the case for our experimental
setup. Additionally, a theoretical single-sensor with a pinhole
or microlens array can also be used.

Hough Line Detection. The Hough Line Transform [22]
is a powerful technique in computer vision for detecting
straight lines in images. The key insight behind the transform
is to represent lines in a polar coordinate system, where each
line is expressed as r = x cos(θ) + y sin(θ). Here, r is the
perpendicular distance from the origin to the line, and θ is the
angle of this perpendicular. This representation avoids issues
with vertical lines and allows for efficient line detection by
converting edge points in the Cartesian plane into sinusoidal
curves in the (r, θ) parameter space. The algorithm uses an
accumulator array to count votes for each (r, θ) pair, and the
cells with the highest votes indicate potential lines.

Overview of Depth Estimation Pipeline. Shown in
Fig. 1, our pipeline initially loads the range of sequential
frames to compute from. For each row index, yi, the EPI
is generated by stacking the row index from all sequential
frames. From the 3-channel EPI we process the positive
event (red) and negative event (blue) channels as separate
grayscale EPIs to create larger separation of positive and neg-
ative event lines that may be too close together. Both EPIs
go through denoising and morphological functions of dilation
and erosion to increase the prominence of the lines. Each
EPI is then sent to the multi-threshold Hough line detection
function and depth is extracted from the detected lines and
assigned to a depthmap.

Denoising Network. Event noise in captured scenes can
cause errors for line detection in the EPIs. This is caused
in two ways: additional events that are not from objects in
our scene, and missing events from our object edges causing



Fig. 2. Experimental setup with Prophesee Mk3 event camera
on a motorized linear rail. The rail is programmed to translate
the camera a short distance to capture different viewpoints
along a plane to form the EPIs.

inconsistencies in the lines themselves. Reducing noise of
the first type is much more beneficial as the minimum thresh-
old limit can then be reduced to detect the more inconsistent
sparse lines.

To denoise, we use a simple UNet-based network that re-
moves noise from the EPI while preserving the lines. The net-
work is trained on simulated EPIs with inconsistent random
lines as ground truth and added salt-and-pepper noise for the
input. The output generates a mask to filter through only the
lines, and the network is trained using L1-distance between
the filtered EPI and the ground truth.

Multi-Threshold Line Detection. We initialize the al-
gorithm at the upper bound of a threshold range, passing the
initial EPI through Hough line detection, which returns an
array of detected lines (r, θ). These lines are added to a cu-
mulative list and remove from the EPI. The updated EPI is
processed again with the next lower threshold, adding new
detected lines to the list and subtracting them from the EPI.
This process continues until the lower bound of the threshold
range is reached.

Higher thresholds more accurately detect closer object
depths, so detecting and removing these lines early helps
prevent errors at lower thresholds, ensuring each feature cor-
responds to a single line and depth. The upper bound of the
threshold range is typically defined to be a little higher than
the number of views/frames used for the EPI, while the lower
bound is roughly half of the upper bound.

Depthmap Generation. From the lines detected by
multi-threshold Hough detection, depth is determined by cal-
culating each line’s slope and assigning it to the depth map
at the pixel corresponding to the line’s x-intercept in the first
frame and row r.

4. DATA AND IMPLEMENTATION

We capture real event scenes using the Prophesee Mk3 cam-
era (1280×720 resolution, 5mm C-mount lens) for depth esti-
mation analysis. The camera is mounted on a motorized linear
rail, programmed via Arduino for translation between two po-
sitions, and synchronized with event camera software for cap-

ture. This setup is shown in Fig. 2. Event data is captured us-
ing Metavision Studio without noise filtering and exported as
.txt files, where each event is represented as (t, x, y, p) where
t is time, (x, y) is spatial location, and p = ±1 is the polarity
of the event. The data is later formatted as accumulated 2D
frames for our method or voxel grids for comparison methods.

After forming and denoising the EPI, we apply dilation
and erosion to enhance tracklines before line detection. Once
depth values are extracted from the EPI lines and placed on
the depth map, we perform post-processing with dilation, a
median blur (kernel size 3), and filter depth values based on
event locations. This ensures accurate depth estimation at the
correct locations and consistency when compared to dense
depth methods.

Baselines. We compare against [2] for a monocular
event-based camera method, and [16] for a stereo method.
Both methods are deep learning-based and produce dense
depthmaps. For consistency, dense depth is filtered using
events as described in the previous section.

5. EXPERIMENTAL RESULTS

We present depth estimations for an example real scene cap-
tured with the Prophesee Mk3 in Fig. 3, featuring a teacup in
the foreground, a drink can in the background, and a Stanford
bunny in the middle. To assess performance, we addition-

Fig. 3. EPI depth on a real scene: reference frame (top) and
resulting 3D event point cloud (bottom). Relative depth is
reported in normalized units from 0 to 1.



Fig. 4. Qualitative comparisons on real data for our method vs. a monocular (RPG-E2Depth) and a stereo (SE-CFF) depth
estimation methods. Quantitative results for this scene are reported in Table 1.

ally compare our method with deep learning-based monocu-
lar and stereo depth estimation methods through qualitative
and quantitative analysis.

In Fig. 4, depth estimates for all three methods are shown.
The monocular method incorrectly estimates object depths,
while the stereo method provides better object separation but
incorrect depths. Our method delivers more accurate depth
estimates for the objects, though with some errors compared
to the ground truth. We also measure quantitative results
against the baseline methods averaged across several real
scenes. Conversion from relative normalized depth to true
metric depth was done using a 3D scan of the scene for all
methods. These are shown in Table 1 with MAE, MSE,
and RMSE error metrics to show that our method performs
noticeably better than both baseline methods.

Table 1. Quantitative comparisons on real data for our
method vs. a monocular (RPG-E2Depth [2]) and a stereo (SE-
CFF [16]) depth estimation methods

Monocular Stereo Multi-view Monocular

RPG-E2Depth SE-CFF EPI-EvDepth (Ours)

MAE 40.63cm 29.94cm 11.50cm

MSE 18.47cm 9.41cm 2.66cm

RMSE 44.25cm 31.59cm 16.79cm

6. DISCUSSION

In this paper, we demonstrated that depth estimation for event
cameras using epipolar plane images (EPIs) with our multi-
threshold Hough Transform-based pipeline. However, there
still remains limitations for our current approach. EPI-based
depth estimation remains sparse, preventing dense depth es-
timation. Our EPI acquisition is horizontal or vertical, and
would not work for general camera trajectories. There is a
tradeoff in the speed of the rail, event acquisition, and the
speed of objects that can be reconstructed. While event cam-
eras can effectively achieve KHz frame rates, the speed of the
rail can only move a few centimeters a second. That is why
we require static scenes in this experimental prototype.

However, if a theoretical light-field based event cam-
era with microlenses above the sensors could be fabricated,
then EPI images could be extracted for dynamic scenes. All
these challenges remain future work, as well as expanding
the method to incorporate full event-based light fields using
2D motion or optical arrays for applications in refocusing,
novel view synthesis, and/or single-shot monocular depth
estimation.
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