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Abstract

We reinterpret NeRFs as a resource for extreme data
augmentation to advance the field of camera relocalization.
Our approach lets us automatically render a massive, den-
sified dataset of novel views, given only sparse ground-truth
viewpoints. We introduce a filtering strategy that, compared
to existing novel-view-synthesis-focused relocalizers, does
not rely on custom or specific NeRF backbones. This fil-
tering strategy allows for significant spatial extrapolation
within the scene, without compromising novel view qual-
ity. As a result, training a lightweight off-the-shelf vision
backbone as a pose regressor on our expanded datasets
significantly improves accuracy, uniquely enables relocal-
ization of very spatially-novel views, and performs well on
portable-scale hardware.

1. Introduction

Relocalization—positioning a camera view within a
known scene—is a foundational challenge for countless ap-
plications from photogrammetry to augmented reality. In
this work, we address the gap in accuracy and robust-
ness among the few real-time-capable relocalization mod-
els. Our key idea is to leverage the high-quality view syn-
thesis of neural radiance fields to move the mapping process
offline, and automatically perform extreme data augmenta-
tion that extrapolates far beyond its initial spatial domain.

This vast augmentation lets us train light, high-sample-
complexity models from the UniRepLKNet [12] family,
frontload the computational burden of scene understand-
ing, and decouple the original training set size from final
model accuracy. Our augmentation more than doubles the
accuracy of multiple architectures relative to an unaug-
mented baseline, and requires minimal hand-tuning, if any.

Using Instant-NGP [27] as our NeRF, we apply our method
to train UniRepLKNet on traditional datasets 7Scenes [14]
and Cambridge-Landmarks [19] demonstrating the relative
impacts of our backbone, augmentation, and filtering strat-
egy relative to various relevant SotA relocalizers.

Our model is robust to sparse data and extreme view-
point changes, a challenge we term “faraway relocalization”
(FR). Scenes like stadiums or warehouses exemplify this
common challenge: spatially-limited training data may ex-
ist despite localization objectives in distant regions of the
scene (e.g. soccer field vs stadium seats). Yet the most com-
mon relocalization benchmarks, which fuel intense compe-
tition in pursuit of SotA performance, often contain spa-
tially adjacent train/test sets, leaving FR underexplored. We
introduce a simple filtering strategy to remove low-quality
samples that deter comparable approaches from such ex-
trapolation, and contribute multiple new FR-focused syn-
thetic scenes to show that sparsity and FR challenge or com-
pletely break otherwise competitive methods like DSAC*
and DFNet, but not ours. We show that only around 200
views are sufficient to train our model in a large, detailed
environment, and that the large-kernel UniRepLKNet back-
bone is uniquely resilient to our patterned, symmetric, or
textureless scenes.

Additionally, our method handles challenging real-life
environments while remaining fast enough for applications
in robotics. We demonstrate our success on mobile hard-
ware in a repetitive office environment that challenges even
classical structure-from-motion (SfM) approaches. With
minimal tuning of view sampling parameters, our trained
model runs on an Nvidia Orin at 50+ FPS and successfully
disambiguates nearly-identical regions of a scene.

We summarize our contributions below, and outline our
proposed pipeline in Figure 1:

* Demonstrate NeRF-based augmentation to dramati-
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Figure 1. We outline our proposed pipeline from unposed frames to a trained relocalization model. We emphasize our sample-generation
strategy which produces novel poses in the neighborhood of ground-truth poses as well as our filter strategy which mitigates negative

outcomes caused by over-extrapolating.

cally improve lightweight relocalizer accuracy while
maintaining efficiency (Section 4.1)

* Reveal a gap in FR among existing techniques through
synthetic environments in which our method excels
(Section 4.1, Section 4.2)

* Showcase real-time portable hardware performance
(~50 FPS on Nvidia Orin) in a real demo (Section 4.3)

Table 1. Model Feature Comparison

Feature DUSt3R DFNet/DSAC* PoseNet Our Method
< 1GB Memory at Inference X v v v
Faraway Relocalization v X X v
Inference Time ~100ms ~5-25ms 5-10ms 5-10ms

Relative Error on Trad. Benchmarks 0.06x 0.35-0.06x Ix 0.38x

2. Background

Classical relocalization, first introduced in 1981 [13], re-
lies on feature matching and bundle adjustment, a main-
stay of structure-from-motion pipelines. Many variations
have since emerged both in academic literature and com-
mercial software for photogrammetry and camera tracking,
like Meshroom [17], COLMAP [32], and RealityCapture.
Early Neural Relocalization In 2016, PoseNet [19] first
demonstrated successful one-shot neural relocalization,
mapping single images directly to a 6-DoF pose estimate
through a convolutional neural network (GoogLeNet [34]),
with minimal compute and memory overhead, but low ac-

curacy compared to classical approaches. An array of aca-
demic literature has emerged since, pushing the frontier in
neural relocalization primarily through a combination of
RANSAC and neural mapping, as in [3-5,21]. Others per-
form RANSAC/ PnP on dense features, like [35].

Scene Coordinate Regressors Feature matching and PnP
of early neural relocalizers evolved toward direct 3D coor-
dinate prediction per pixel. These approaches decouple the
perspective-n-point [ | 3] problem from image identification
or feature recognition. In [3-5], Brachmann et. al. explore
training a CNN using reprojection loss to predict scene co-
ordinates from images. In DSACH*, they show that this
CNN learns an implicit scene representation without a depth
prior, by slowly converging to a consistent scene coordinate
output. Later advancements like Ace and Acezero [2,6] im-
prove upon the organization and processing time of these
features but leverage the same fundamental DSAC* scene-
coordinate-regression. Despite their state-of-the-art accu-
racy critically rely on a small receptive field that struggles
with repetitive features (81 x 81 pixels in the case of DSAC*
and its successors) [5], unlike our choice of UniRepLLKNet
which exhibits a global receptive field. Furthermore, related
approaches have traded PoseNet’s simplicity for costly iter-
ation, often querying a map at test-time, neural or explicit,
which occupies a costly memory footprint, asin [21,31,36].
Large Transformers Most recently, works like DUSt3R
[40], Mast3R [20], and VGGT [38] have pushed bound-
aries in relative camera localization through approaches



mirroring trends in large language models: “troves” of data,
and massive but straightforward transformer architectures.
These approaches boast inference times as low as 50ms, and
generalize from massive datasets which enable relative lo-
calization of numerous camera poses in wholly unknown
environments, no training poses needed. However, they
are unsuited to the task of lightweight relocalization due to
a significant memory footprint for suitable queries (poten-
tially over 40GB at inference), and lacking training context,
cannot absolutely metrically relocalize views. Marepo [9],
a recent work from the authors of [2, 3, 5, 6], overcomes the
lack of metric pose in the other large transformer models
and boasts greater inference efficiency, lower than 20ms.
However, it too is prone to profound memory constraints
(V100 recommended for inference), excluding it from the
lightweight / portable regime of models we emphasize in
this work.
NeRFs and Augmentation-centric Relocalizers Neural
Radiance Fields [23] enable realistic novel view synthesis
(NVS). Fast implementations which leverage Instant-NGP’s
(INGP) hash encoding [27], make large-scale view synthe-
sis tractable. An array of literature leveraging NeRF NVS
in localization has recently emerged. Several fall victim to
slow test-time iteration [8,41,43,44] (5-20+ seconds/query
on desktop hardware), exempting them from the lightweight
regime we target. Others perform their NVS offline, like
ours [10,30,39], but suffer from shortcomings in sampling
strategies such as constraining to a horizontal plane [26,30],
or lack a robust filter to permit scene extrapolation [ 10]. Our
closest competitors are DFNet and LENS [10,26]. DFNet,
biases synthetic training data towards ground truth, unlike
our uniform sampling, and, lacking a filter, cannot extrap-
olate for FR. LENS uses a proprietary, unavailable model
from its authors, CoordiNet [25], and constrains its synthe-
sis to a plane, catering to traditional benchmark datasets.
While transformer-based models like DUSt3R [40] and
NeRF-based methods such as PNeRFLoc [43] and CaLDiff
[33] offer great relocalization accuracy, their computational
footprints limit their feasibility in real-time or portable ap-
plications (seconds per frame on desktop hardware), while
lightweight competing models are not robust to repetitive
scenes or spatially-novel views.

3. Methods

Our method consists of two main stages: NeRF-based
data augmentation and pose regressor training.

3.1. NeRFs as a Dataset Expansion Tool

Our proposed pipeline begins with computing a NeRF
of each scene. While the choice of NeRF architecture may
benefit convergence, our sampling strategy is agnostic to the
architecture used and depends optionally on efficient NeRF
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Figure 2. Our data augmentation method extrapolates, rather than
interpolates, to capture an enlarged volume of the scene: we sam-
ple new camera poses near ground-truth viewpoints (1) with per-
turbed orientations relative to nearest-source-pose neighbor (2) to
dramatically expand scene coverage (3). This results in training
data with a more thorough coverage of 3D features, though at the
cost of perceiving unconvergent regions of NeRF which must be
addressed through filtering.

rendering, in order to make the generation of new samples
computationally tractable at scale.

NeRF Training / SfM Producing a NeRF requires robust
ground-truth poses for the training dataset of imagery. Our
method therefore relies on existing SfM pipelines, but the
technique for recovering these poses falls outside the scope
of this work. We use Alicevision/Meshroom [17] almost
exclusively due to its performance and accessibility. We ap-
ply INGP [27] as our NeRF for all experiments for similar
merits, and utilize INGP’s full suite of optimization options
(pose, exposure, intrinsics, latents) where they were found
to improve convergence. No depth priors are used in any ex-
periments, nor do we compare against RGB-D relocalizers.
All NeRFs are trained strictly using the training subset of
data, including those of synthetic scenes, in which synthetic
data is rendered using Blender [11]. Additionally, periodic
resets of the INGP optimizer are performed, and the stan-
dard INGP learning rate is reduced by a factor of 10 to im-
prove convergence. We note that while a convergent NeRF
is preferable, even noisy NeRFs produce adequate results
due to both the low resolution of imagery used in training
and our backbone’s robustness to noise. We plot the final
training loss of our various NeRFs against the best relocal-
ization results achieved on their datasets in Figure 4 to show
the lack of correlation.

Sampling Having recovered ground-truth poses and a
NeRF, we uniformly sample a region within some radius
of those poses, placing new cameras, and aligning them to
the nearest ground-truth pose’s orientation, which we sub-
sequently perturb by some angle (detailed in Section 4).
We then re-image the NeRF from this new set of sample
poses. This process goes beyond traditional data augmen-
tation (e.g., affine transforms, color jitter), which cannot
synthesize the truly novel viewpoints necessary to address



FR, a property we emphasize in Figure 2. Unless otherwise
noted, we render 10,000 new perturbed views of each scene
configured with matching camera parameters to the test set.

Filtering The augmented data is filtered in order to omit im-
ages from cameras which have strayed far enough from the
training domain to image NeRF regions with poor conver-
gence. We first annotate synthesized images by black pixel
count, image variance, BRISQUE score [24], and ClipIQA
score [37]. While BRISQUE and ClipIQA help identify se-
mantically meaningful or photo-like structure, variance is
responsible for omitting the bulk of imagery, since most
problematic samples manifest as noise. The black pixel
count helps omit photos that look beyond the edge of the
NeRF domain — rays that do not intersect with the volume.

For each score, we experiment with filtering at two dif-
ferent thresholds: (1) at the 99.5th percentile values of the
training data (i.e., images with more black pixels than the
top 99.5th-percentile-by-black-pixels image in the training
set, or lower variance than the bottom 0.5th percentile of the
training set); and (2) more conservatively, at the 97th/3rd
percentile of the training data. We find that image filtering
decouples model accuracy from the degree of sample per-
turbation/radius. Image filtering ensures that even a naively-
sampled scene with gross extrapolation produces results
comparable to a conservatively-sampled scene, thereby re-
ducing the need to tune sampling parameters. This sets us
apart from approaches like DFNet [ 10], which cannot filter
out poor-quality poses and therefore must apply conserva-
tive sampling that demonstrably prevents its utility in FR.
We also contrast to LENS [26], which filters poses based on
the NeRF density field. LENS’ approach is prone to noise
and challenges related to scene geometry (bounds, mani-
fold, inside/outside). Furthermore, LENS constrains novel
views to a plane in order to cater to its benchmarks, unlike
our comparatively robust, efficient, tuning-free, and broadly
applicable sample selection strategy.

We plot the impacts of filtering by each metric on the
cumulative data distributions of one of the “traditional”
datasets in Figure 3. Although the volume of images re-
jected by filtration implies its importance, our results show
that, in several cases, choosing not to filter is superior (Ta-
ble 2). This is due to the reduction in training data resulting
from filtering and UniRepLKNet’s robustness to otherwise
unfiltered noisy or featureless images.

Filtering can be problematic in extreme cases. Combi-
nations of gross extrapolation in sampling, aggressive fil-
tration, and limited sample counts will result in very few
new samples surviving the filter, producing comparable re-
sults to an unaugmented baseline. Thus, while filtering re-
duces the need for precise tuning, selecting reasonable sam-
pling parameters (e.g., avoiding extrapolation far beyond a
scene’s rough bounding box) remains beneficial.

3.2. UniRepLKNet Pose Regression

We choose the UniRepLKNet architecture [12] as our
pose regressor for its favorable performance, global recep-
tive field, and demonstrated resilience in low-texture or
patterned environments where competitors struggle. Un-
less otherwise noted, we apply UniRepLKNet-A, pre-
trained on ImageNet-1K, in all experiments. It is smaller
(4.4M params) than PoseNet’s GooglLeNet backbone (6.6M
params), yet performs comparably. We append a regression
head to predict 6-DoF pose (parametrized as XYZ WXYZ,
with the quaternion explicitly normalized as a final step),
and train for 100 epochs on each dataset, merging the newly
sampled imagery with the provided training imagery, and
splitting 90:10 training to validation. We use cosine anneal-
ing [22] with a single warm restart halfway through train-
ing, and ADAM as our optimizer. Our loss function equally
penalizes euclidean distance (m) and orientation error (°).
We downscale images to a short-side length of 256px, then
center-crop to 2242 following [19] and due to observed in-
significance of higher resolutions.

Several minor experiments were performed to inform
these decisions: higher resolutions, deeper UniRepL.LKNet
architectures (-B, -P, -N), and loading of pretrained weights
each appeared not to contribute meaningfully to accuracy
beyond chosen settings.

4. Experiments and Results

We report three categories of experiments: Traditional
Datasets, in which we compare to prior work; Syn-
thetic Scenes, in which we demonstrate FR in plausible
drone flight scenarios and describe ablations; and Hard-
ware Demonstration, in which we demonstrate efficiency
and symmetry/repetition-robust relocalization in a real-life
demo.

4.1. Traditional Datasets

We present median translation and angle accuracy of
comparable state-of-the-art methods on the 7Scenes and
Cambridge Landmarks datasets, as reported in [40]. Each
dataset provides an array of scenes with posed cameras and
corresponding images, and designates standard training and
testing sets. We provide dataset details including incon-
sequential adjustments made to the Cambridge Landmarks
dataset in Appendix A.

For each scene, we perform four augmentations, sam-
pling within varying radii and perturbations of the training
poses. For the 7Scenes [ 4] dataset, we use radii/orientation
perturbations of 20cm/10°, 40cm/20°, 60cm/30°, and
80cm/40°. For Cambridge Landmarks, the sampling ra-
dius is increased proportionately to the scene domain to
75cm, 150cm, 225c¢m, and 300cm (orientation remains un-
changed). For each choice of sampling, we experiment with
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Figure 3. We illustrate filter threshold selection based on the distribution of referenceless image quality metrics in the original training
data, and the effects of the selected cutoffs on the augmented data from the Cambridge-GreatCourt scene.

Table 2. Accuracy and Compute Comparisons

Inference Memory Usage, Latency TSeenes Cambridge
C F H (o] P RK S GC KC OH SF SMC
PoseNet| 50MB, 5-10ms Nvidia Titan Black |32, 6.60 47,14.0 30,12.2 48,7.24 49,8.12 58,8.34 48,13.1 | N/A  166,4.86 262,4.90 141, 7.18 245,7.96
DUS3R (Best of 224/512) 12+ GB, 50-250ms H100 3,97 3,95 1,1.00 3,101 4,1.14 4,134 11,2.84 36,024 11,.2 17,033 6,.26 7,.24
PixLoc N/A, 88ms, RTX 2080ti 2,.80 2,.73 1,.82 3,82 4,121 3,12 5,130 |30,0.14 14,24 16,032 5,23 10,.34
HSCNet++ >80MB, 85-130ms 2,63 2,79 1,8 2,65 3,85 3,109 3,083 | 28,2 19, .3 18,.3 6,.3 9,3
DSAC* 180MB, 20-30ms RTX 4080 2,1.10 2,124 1,182 3,1.15 4,134 4,168 3,1.16 | 49,3 15, .3 15,.3 5.3 13, .4
DFNet 100mb, Sms, RTX A6000 5,1.88 17,645 6,3.63 8,248 10,2.78 22,545 16,329 | N/A 73,237 200,298 67,2.21 137,4.03
DFNety,, 100mb, Sms, RTX A6000 4,148 4,216 3,1.82 7,201 9,226 9,242 14,331 N/A 43,087 46,0.87 16,0.59 50,1.49
UniRepLKNet* |45MB, 5-10ms RTX4080, (20ms Orin)| 16,5.6 42, 11.31 16, 12.86 26, 6.36 30,5.30 31,6.24 54, 11.58| 648,4.9 815,6.6 249, 1.47 140,5.74 247,5.33
* Augmentation |45MB, 5-10ms RTX4080, (20ms Orin) | 6, 1.80 14,4.47 8.27,4.07 12,2.68 15,2.59 16,2.97 36,3.25 |463,4.21 59,096 111,1.42 45,148 113,2.76
* Augmentation + Filtering |45MB, 5-10ms RTX4080, (20ms Orin)| 8,2.1 17,496 7,398 19,3.17 14,2.60 16,3.03 25,3.06 |395,4.16 66,0.96 129,2.24 46,1.54 124,2.99

Our model improves 2x-4x over PoseNet with real-time inference and a tiny memory footprint. While DSAC* and DFNet compare in
efficiency, both are prone to limitations explored in Section 4.2, and we exceed the baseline DFNet without the direct-feature-matching
component, indicating a plausible superiority in our augmentation and filtering scheme. Dataset scene titles are abbreviated for
readability. Absolute best results in each column are bolded/underlined, while the best of our results are highlighted in green, and
comparably worse results from competing models in red.

two levels of filtration as described in Section 3.1. This re-
sults in a total of eight trained models per scene. We report
best results by selecting the model with lowest validation
loss among each scene’s augmentation-trained models.Our
strategy of mixing augmented and original samples for both
training and validation succeeds in selecting the best test-
result model in most cases, or comes close.

We find that augmenting improves UniRepLKNet ac-
curacy uniformly by at least 2x, outperforming PoseNet
by 2x-4x, while remaining similarly real-time on portable
hardware. Importantly, we show that UniRepLKNet alone,
without augmentation, contributes minimally to the im-
provement over PoseNet, in some cases even underperform-
ing as in Cambridge-KingsCollege. This cements augmen-
tation as the main driver behind the improvement in accu-
racy.

Final Reported INGP Training Loss vs Position Error

INGP Loss Error %

0.010

0.008

0.006

INGP Loss

0.004

0.002

Figure 4. The final reported checkpoint loss of our various NeRFs
does not correlate with final model performance, hinting at the
noise-tolerance of UniRepLKNet and the success of filtering.

shown in Figure 5). Further dataset and implementation de-
tails may be found in Appendix A.

In the Hangar scene, which emphasizes challenging
symmetry and reflective surfaces, our model relocalizes a
simulated drone flight path with an error of only 9m/9°,
despite test views being, on average, 25m from the near-
est training view. DSAC¥* fails to converge entirely, with a
catastrophic median error of 53.3°and 7km, a consequence,

4.2. Synthetic Datasets

To test challenging FR situations, we produce two syn-
thetic datasets: “Hangar”, and “Dronerace”, designed with
repetitive features and spatially distant train/test sets (as
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Figure 5. We show the mean, median, and 90th-percentile-highest distances to the nearest train pose per test pose of each “traditional
dataset” scene, and compare to our synthetic datasets whose train/test sets differ significantly. This highlights our synthetic scene’s unique

exploration of faraway relocalization.

we hypothesize, of the patterned environment. Dust3R also
fails to handle more than a small fraction of the dataset
at once for pairwise localization, and must be paired with
image databases and retrieval to overcome memory con-
straints. We conduct several ablations illustrated in Fig-
ure 6, showing that increased sample density, higher train-
ing resolution, and larger model variants did not improve
performance further.

Our Dronerace scene is created with the intent of simu-
lating the constraints of autonomous drone racing, an area
to which our approach is well-suited. We note a recent au-
tonomous drone racing event which featured Nvidia Orin
NX GPUs on drones as the sole source of compute [I],
hardware we later experiment with in Sec. 4.3. This scene,
though less, repetitive, symmetrical and smaller than our
Hangar dataset, features only 200 ground-truth views de-
signed to blanket the environment from a spatially lim-
ited region and challenge existing models on sparsity. We
achieve a mean translation error of 4.6m. Keeping with
the theme of the dataset and intending to show the prac-
ticality of our approach, we fuse model predictions to a
realistically-simulated IMU [16], showing that outlier pre-
dictions may be constrained, and median error lowered to
4.2m with an optimally-tuned Kalman filter. We again ex-
periment with DSAC* and DFNet on this dataset. DSAC*
fails to converge with 121.9°and 561.3m median errors.
DFNet also succumbs to the sparse initial poses though less
catastrophically as we show in Tab. 3. DFNet, even with
the same far-reaching novel view-synthesis (NVS) param-
eters to our model and a comparable scene reconstruction
quality, is unable to filter out poorly-posed views.

4.3. Hardware Demonstration

Beyond emulating the drone racing scenario through
synthetic scenes, we also explore a real-life hardware re-
localization demo. We capture an office environment with
challenging repetitive scenery through a fisheye-lens cam-

Method (NVS Perturbation) Mapping E Inference
PSNR  Time rror Perf.
(m/°)
Ours (15m + 180°) 22.80 2m 4.09/12.80 10ms/50MB
DFNet (15m + 180°) 22.26 3h54m|20.27/136.31 Sms/100MB
DFNet (3m + 7.5°) 2226 3h54m | 19.56/129.66 5ms/ 100MB
DEFENet (0.2m + 10°) 2226 3h54m | 19.47/137.22 5ms/ 100MB

Table 3. DFNet trained on poses synthesized with matching pa-
rameters to our own, as well as with parameters used in its original
paper for Cambridge and 7Scenes, fails to converge, revealing its
inability to relocalize distantly-posed views.

era with very high FOV. The office scene contains numer-
ous repeating features including identical chairs, computers,
and large identical and feature-limited cubby structures. We
drive a drone [42] through the scene with the same camera,
producing a ground-level test perspective.

We use Meshroom/Alicevision [17] to localize both the
train and test set, each spanning around 1000 images. No-
tably, SfM fails on the aforementioned cubby structures,
also pictured in Figure 7, and requires manual splicing and
significant finetuning to recover accurate poses. We fol-
low our usual procedure of NeRF training and sampling of
the scene within a Im radius of ground-truth train poses,
and with up to 40 degrees of perturbation from the training
data, producing 10,000 additional samples to supplement
the training set.

In order to emulate real-time relocalization, we test our
model on the drone’s onboard computer, an Nvidia Orin NX
16GB, measuring VRAM and inference. Uncompiled, our
model achieves real-time framerates of ~50FPS (22ms),
with peak VRAM utilization under S0MB. We illustrate the
trajectory and report accuracies in Figure 7, highlighting
our model’s success in localizing ambiguous imagery in the
same cubby regions that SfM failed to disambiguate. We
postulate this success stems from UniRepLKNet’s global
receptive field, which can leverage the peripheral context of
the fisheye lens used on resolutions higher than 224x224,
unlike DSAC* or PoseNet.



Figure 6. Synthetic Datasets
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Above / right, we depict the test
trajectory in red, and the train
trajectory in green.

We achieve a mean accuracy of 6.68m/7.85°, via UniRepLKNet-N and 25,000
boosted samples. However, as illustrated below, various combinations of
sample count, density, and model depth have little effect on outcomes. We
compare against the same train/test scenario without boosting, training only
from the images in the periphery of the hangar. Without boosting, our model
never achieves a test error lower than 20m, averaging closer to 40m and 15
degrees of position and orientation error, clearly visible below.
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Our Hangar environment allows us to ablate on sample density (as measured
out of the conveniently rectangular hangar volume) and sample count. No
significant trend is noted above ~1000 boosted samples (below which
performance degrades towards baseline). We also compare UniRepLKNet-B to
-N. The -B variant of the architecture has 98m parameters, compared to -N’s
18.3m, but no significant difference in performance is observed.

Dronerace

Dronerace demonstrates our model’s ability to handle FR and sparse training
data. We depict train poses in green and our test poses in red. An example of
challenging faraway relocalization is shown below.

v

A

Our dronerace scene also helps illustrate the importance of filtering as
deduced from the structure and gross reduction in samples depicted below:
Filtered Out (88,340)

Survived (11,660)
o Original (201)

Survived (11,660)
o Original (201)
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Simulated Sensor Fusion

We show that our model is suitable for grounding of inertial localization by
fusing it to a simulated IMU via optimally-tuned Kalman filter.

Error Distribution Cumulative Error Over Time
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Sensor fusion reduces our model error,
especially among outliers. We depict the fused
trajectory (black) intersecting a drone racing
checkpoint, and the noisy model predictions in
its vicinity (orange). This is one of the few
checkpoints intersected by our model, hinting
at the difficulty and credibility of the FR
challenge we introduce.
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Figure 7. We visualize predictions in our hardware demo, empha-
sizing the red/green and blue/yellow cameras/views which show-
case the successful relocalization of two nearly identical but differ-
ent regions. We demonstrate localization that handles these repet-
itive regions well, with a respectable median error of 20cm / 6°,
and limited hyperparameter tuning. The LiDAR depicted was not
used.

5. Ablation on Backbone

Though our experiments and other ablations (Figure 6)
exclusively feature UniRepLKNet as our backbone of
choice, we note our method is broadly compatible with pose
regressors, generating simple labeled RGB images. How-
ever, the choice to apply UniRepLKNet is well-motivated.
This architecture is known to exhibit transformer-like per-
formance, such as a need for larger volumes of data, a
global receptive field, and superior performance per com-
pute. To validate our decision, we replace UniRepLKNet
with two backbones - an attempted reimplementation of
CoordiNet [25], a closed-source model used in [26], and
ResNet-152 [18], as provided by PyTorch [29]. As results
in Tab. 4 demonstrate, our model is compatible with the
technically complex CoordiNet pose regressor implemen-
tation, as well as the baseline ResNet-152. Critically, de-
spite being the most lightweight of these, UniRepLKNet-A
achieves the best performance improvement from our aug-
mentation method, exceeding that which the LENS paper
reports on its own closed implementation of CoordiNet.

Table 4. Alternative Regressors

Method AVG, Median Error Aftl: :Iitive Errg'rim Params, Mem.
ggg;ﬁ:zg -(i-PI‘il])ieI:I)S (Paper) 3520, %g 0.43x, 0.45x N/A, N/A
?lgurcgggiigsl[mion 21(())%): A;SS 0.47x, 0.39x 11.5m, 61mb
?Lgul:is:;;éitzation 21622;’, 524; 0.47x, 0.39x 62m, 249mb
N S 0 B T e

Best results bolded, green shows best result of our experimental
backbones, relative to inferior ablations highlighted in red.

6. Limitations and Conclusion

We introduced Augmenting with NeRFs, a method that
improves the accuracy of lightweight, single-shot relocal-
ization models. Our approach sidesteps many limitations
of existing methods, especially an inability to localize fa-
miliar regions from spatially novel perspectives, by aug-
menting relocalization datasets with many additional, often-
extrapolative samples. We show that augmenting reduces
error in UniRepLKNet by as much as 70% compared to
an unaugmented baseline across many datasets. We also
qualitatively demonstrate that the wholly-encompassing re-
ceptive field of UniRepLKNet, combined with wide-angle
cameras, can handle repetitive structures and integrate pe-
ripheral details into predictions where even classical StTM
fails, making it well-suited to relocalization. In synthetic
scenes with faraway-relocalization objectives, our approach
stands alone in accuracy and robustness.

Our method has several limitations. First is reliance on
often-brittle SfM pipelines for otherwise-unposed ground-
truth, a recurring theme in relocalization works. Sec-
ond, our sample placement is a brute-force inefficiency—
rendering 100,000 views to discard 90,000—that could
be reconciled by NeRF-uncertainty-aware sampling (e.g.,
Bayes Rays [15]), but still challenges related papers [7,28].
Future work may look to the strategy SPPNet exploits on
feature point clouds to more efficiently mine new poses,
though this too requires ample pruning [30]. This inef-
ficiency is mitigated by our model’s compatibility with
hash-encoding-accelerated NeRF backbones like Instant-
NGP [27] and its successors, which enable us to trivially
generate such vast amounts of synthetic views (see ap-
pendix for training times). Third, we introduce new hy-
perparameters (sampling radius/perturbation) which, while
controlled by filtering, may still require tuning and can
modestly impact results. Finally, VRAM limitations pre-
vent us from exploring resolutions higher than 512x512,
or architectures deeper than UniRepL.LKNet-B. Further ab-
lations and VRAM-unlimited explorations may reveal de-
sirable compute-performance tradeoffs or a more precise
lower bound for sample count.

Despite these limitations, pushing NeRF augmentation
orders of magnitude higher is a promising direction for the
relocalization field that may be used to complement the



training of many other approaches which innovate on pose
regressors. We hope our work brings attention to simpler
parsimonious architectures and lightweight relocalization
methods that improve relocalization on portable robotics
like FPV drones, AR/VR, and mobile devices.
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