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FoveaSPAD: Exploiting Depth Priors for Adaptive
and Efficient Single-Photon 3D Imaging

Justin Folden, Atul Ingle∗, and Sanjeev J. Koppal∗

Abstract—Fast, efficient, and accurate depth-sensing is impor-
tant for safety-critical applications such as autonomous vehicles.
Direct time-of-flight LiDAR has the potential to fulfill these
demands, thanks to its ability to provide high-precision depth
measurements at long standoff distances. While conventional
LiDAR relies on avalanche photodiodes (APDs), single-photon
avalanche diodes (SPADs) are an emerging image-sensing tech-
nology that offer many advantages such as extreme sensitivity and
time resolution. In this paper, we remove the key challenges to
widespread adoption of SPAD-based LiDARs: their susceptibility
to ambient light and the large amount of raw photon data that
must be processed to obtain in-pixel depth estimates. We propose
new algorithms and sensing policies that improve signal-to-noise
ratio (SNR) and increase computing and memory efficiency for
SPAD-based LiDARs. During capture, we use external signals
to foveate, i.e., guide how the SPAD system estimates scene
depths. This foveated approach allows our method to “zoom
into” the signal of interest, reducing the amount of raw photon
data that needs to be stored and transferred from the SPAD
sensor, while also improving resilience to ambient light. We show
results both in simulation and also with real hardware emulation,
with specific implementations achieving a 1548-fold reduction
in memory usage, and our algorithms can be applied to newly
available and future SPAD arrays.

Index Terms—Foveation, single-photon avalanche diode, time-
of-flight, computational imaging

I. INTRODUCTION

B IOLOGICAL vision systems have the remarkable ability
to foveate — i.e. redistribute cognitive resources towards

“salient” features or objects in a scene, depending on context.
Unfortunately, most conventional cameras and computer vision
systems today capture scene information in a non-adaptive
fashion, spending power and bandwidth on sensing scene com-
ponents that may not help the overall imaging task. In fact, the
current framework for deep learning-based systems assumes
uniform sampling of the scene and overcomes these limitations
through data-driven pipelines that focus on interesting regions
of the scene [1] [2] in the input RGB images.

While this inefficient but popular framework for conven-
tional RGB sensors may be difficult to change, our proposed
method, called FoveaSPAD, can impact the next wave of
single-photon avalanche diode (SPAD) sensor technology.
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SPADs can capture scene information at the granularity of in-
dividual photons, at timescales as small as 10’s of picoseconds.
Recent advances in CMOS-compatible SPAD pixel designs
has enabled real-time in-pixel processing of these photon
timestamp streams. Thus, SPADs are a natural candidate for
designing efficient depth cameras — individual pixels can
be reprogrammed on-the-fly to adaptively accept or reject a
spatio-temporal subset of the photon stream.

Our FoveaSPAD algorithms enable capturing scene informa-
tion at higher granularity in regions that are most relevant to a
downstream vision task. In this sense, we generalize the term
“foveation” in the context of adaptive SPAD spatio-temporal
sampling to allow both depth and memory efficiencies. For
robots, remote sensor nodes, and other resource-constrained
systems, foveation for SPAD sensors can allow accurate depth
sensing under constraints on power and bandwidth (see Fig.
1).

The raw data captured by an array of SPAD pixels can be
thought of as a spatio-temporal photon stream. Each photon
detection is represented as an (x, y, t) coordinate, where the
x−y coordinates denote the pixel location and the t coordinate
denotes the photon detection timestamp. Each SPAD pixel
captures the round trip time of a laser pulse to and from a given
scene point, constructing a photon timing histogram which
records the number of photons captured at various time delays
with respect to the time the laser pulse was transmitted. Each
pixel must construct one such histogram, typically with 1000’s
of bins, which causes a severe data bottleneck for today’s
SPAD cameras. To illustrate the severity of the bottleneck,
consider a 1-megapixel SPAD array with a 1000-bin histogram
per pixel, storing 1 byte per bin. At 30 frames per second, this
setup generates a staggering 30 GB of data every second

Our algorithms foveate across the spatio-temporal histogram
space to efficiently recover the peak, providing the time-delay
t for depth computation. We adaptively capture subranges to
locate laser photons, rejecting ambient photons. Note that our
proposed algorithms are not exhaustive; rather, we aim to
define a class of algorithms that rely on a depth prior. In
this work, we propose three methods for acquiring priors,
though many other methods exist, such as depth from stereo,
depth from defocus [3], or non-vision-based methods such as
sonar. Each method has trade-offs, and it is up to the user
to determine which method best suits their use case. Our
contributions in this work are as follows:

• We present a theoretical model for expected gains (in
terms of increased signal-to-noise-ratio and depth resolu-
tion) from foveation with SPADs.
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Fig. 1. Depth Prior Driven SPAD Depth Foveation: SPAD sensors suffer from a data bottleneck, since thousands of histogram bins are used to generate
depth as shown in the top left. If fewer bins are used, this reduces depth resolution, as shown in the limited bins depth result. Our idea is to use additional
information, such as a color image (Sec. IV, VII) or optical flow (Sec. VI), to foveate the SPAD bins. Therefore, for the same memory cost we can place the
bins near where the histogram peak should be, results in accurate depth, as shown in the depth foveation result. The insets show that our method achieves
the accuracy and resolution of ground truth, with fewer bins. They also show that the depth prior, in this case monocular estimation, by itself cannot provide
the correct depth, and foveation is required.

• We explore the question of how to foveate in space and
time at a single time instant by leveraging monocular
depth estimates, which can come either from the SPAD-
generated image or a cheap, external color camera. We
propose different flavors of practical FoveaSPAD designs
that optimize for memory/bandwidth and depth resolu-
tion.

• For images of moving scenes, we demonstrate how to use
optical flow cues to direct SPAD foveation.

• We show results both in simulation and using recently
available real SPAD datasets.

A. Hardware Emulation

Time-correlated single photon counting is the technique that
enables SPAD cameras to build histograms and control binning
on-sensor. Our work is limited to simulation experiments and
hardware emulation of existing SPAD LiDAR data. Hardware
emulation refers to leveraging real-world data captured using
a single SPAD or line arrays [4], [5], which we then use to
emulate the performance of larger SPAD arrays. While SPAD
sensor arrays with native support for foveation are not yet
available commercially, we believe our proposed techniques
could be implemented at the pixel or camera level. This is
supported by recent proofs-of-concept in kilopixel-resolution
reconfigurable SPAD arrays with in-pixel timestamping, gat-
ing, and histogramming capabilities [6], [7]. We anticipate that
this work will inspire future hardware designs, leading to more
efficient and versatile SPAD sensor arrays.

B. Scope: Simulation and Emulations

In this work, we anticipate future hardware advancements
that will enhance SPAD-based depth sensing. Our simulations
and emulations are intended to project the performance of
emerging SPAD sensor technologies, focusing on adaptive

and efficient bin sampling to mitigate memory bottlenecks
with minimal loss of accuracy, which is particularly advan-
tageous for flash-based SPAD LiDARs systems. Potential
future implementations could feature a shared “macropixel”
architecture and a dynamic gating system, allowing pixel
groups to adjust to appropriate gating signals in real time.
We explore these ideas further in Sec. VIII and present a
speculative “macropixel” array design in Figure 10, which
includes a variable-resolution TDC—a key component for one
of the proposed methods. These simulations play a critical role
in validating our algorithms and highlighting their potential
impact on future sensor designs, even in the absence of current
hardware.

II. RELATED WORK

Our research takes inspiration from biology, since many
animals have a region of high spatial acuity, i.e. the fovea,
which they scan over the scene. In this sense, we are allied
with foveated imaging research in computer vision and compu-
tational photography, and we now outline these related efforts:

Efficiency in Single-photon 3D Cameras: The data bot-
tleneck issue in SPADs due to high-resolution sampling in
histograms is well-known. Research that attempts to mitigate
this issue include novel statistical representations [8] as well
as compressive histograms [9]–[11] that use a small number
of bins at maximum resolution to recover the entire scene.
In contrast, our approach works and scales easily with a large
number of SPAD pixels. Other efforts include partial histogram
methods such as using sliding windows for sub-range gating
has been investigated [12]–[15] which have linear efficiency
and two-stage coarse-to-fine resolution scaling [16] which
provide logarithmic efficiency. Our method uses context from
cues such as optical flow to provide ≈ O(1) near-constant time
efficiency. Finally, other work has used external sensors for
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guided upsampling or upscaling, [4], [17], but these are post-
capture processes. In contrast, we perform foveation during
capture and this gives us SNR and compute efficiencies that
we have theoretically analyzed. A complementary approach
to foveation is to use adaptive “equi-depth” histogramming
approach for the signal peak [18]. Our approach is also com-
plementary to adaptive gating approaches for SPAD LiDARs
[19], with adaptive gating and exposure techniques working
with or without a prior.

Foveated Depth Sensors: Our work is related to post-capture
methods for upsampling and superresolution shown on data
from many modes, such as depth images, color photographs
etc. [20]–[24] and many of these have blended deep learning
algorithms into the process of deciding where to sample [24]–
[29]. In fact, some of these algorithms are mature enough
that commercial depth and LIDAR sensors allow post-capture
foveation of the 3D point cloud through, for example, LIDAR-
RGB fusion. In contrast, FoveaSPAD adapts during capture,
and the efficiencies can impact small autonomous systems with
power constraints. Directionally controlled LIDAR systems
foveate spatially [30]–[33]. These results complement our
work on temporal foveation of SPAD sensors, including spatio-
temporal foveation results (Sec. V).

Foveation in Display Graphics: Foveation is an important
research topic in computer graphics, where data displayed to a
viewer on AR/VR glasses, for example, is rendered in a way
that reduces bandwidth [34]. Most of the work in this area
does not focus on data capture but only on data visualization
post-capture [35], [36]. Foveated light-field optics have been
proposed [37] and these can be integrated with algorithms that
foveate which portions of the scene to render at high reso-
lution to reduce rendering resource consumption. Algorithms
include perceptually guided foveation [38], [39] and hardware-
optimized rendering [40]. Unlike our depth sensor, these use
passive displays and cameras to optimize bandwidth, storage,
and compute.

SPAD Histogram Techniques: Various techniques have been
recently proposed to reduce the memory and bandwidth re-
quired to capture high-resolution photon timing histograms.
Compressive histogramming techniques rely on a lower-
dimensional linear projection of the high resolution histogram
[5], [11] and estimating scene distances directly from the
compressed representation. Algorithms that rely on “sketch-
ing” [41] attempt to directly estimate a parametric form of
the true underlying waveform. These compressive acquisi-
tion approaches can be combined with foveation techniques
developed here to further reduce the bandwidth required to
store histograms. Differential capture methods [42], [43] can
provide large reduction in bandwidth, but unlike foveation-
based techniques, differential capture methods require ad-
ditional post-processing to recover absolute scene depths.
Recently, photon processing techniques that bypass the need
for constructing a histogram have also been proposed, but they
only work in the case of a single strong peak [44]. Sun et
al.’s optical coding and super-resolution techniques leverage a
phase plate and deep learning to achieve super-resolved images
with minimal photon counts, further optimizing SPAD-based

imaging [45]. Such optical techniques can work synergistically
with our foveated capture approach, collectively reducing data
transfer and computational demands.

III. IMAGING MODEL AND THE FOVEATION ADVANTAGE

In this section, we present the imaging model and the
concept of foveation, specifically focusing on how foveation
can enhance the efficiency and effectiveness of (SPAD) Li-
DAR systems. We will delve into the specifics of how the
imaging model is constructed, including assumptions about
the behavior of laser pulses and photon detection, and how
these factors influence the design and performance of SPAD
sensors. Furthermore, the impact of ambient light on signal-
to-noise and signal-to-background ratios will be examined,
demonstrating how foveation can mitigate these effects. The
theoretical foundations laid out in this section will serve as the
basis for the foveation techniques proposed in the subsequent
sections, where we will develop and analyze algorithms to
optimize the selection of foveated bins in SPAD imaging.

A. Foveation and Scene Priors

We propose two methods of foveation, specifically memory
foveation and depth foveation, are designed to optimize the
efficiency of SPAD LiDAR systems by leveraging a priori
knowledge about the scene’s depth. Both methods require
adaptive per-pixel gating, for which the hardware has yet to
be developed.

Memory foveation focuses on reducing the amount of data
that needs to be stored and processed by concentrating on a
subset of histogram bins where the depth information is most
likely to reside. Depth foveation, on the other hand, aims to
improve depth resolution by reallocating histogram bins into
a smaller, more focused region around the expected depth.
The strategies proposed are fundamentally dependent on the
accuracy and reliability of the scene depth prior, which guide
the allocation of sensor resources.

Depth priors may be derived from any variety of means,
including coarse initial scans, external sensors, or deep learn-
ing models. In this paper, we explore a few options, namely
monocular estimation in Sect. IV, optical flow warping in
Sect. VI, and coarse initial scans in Sect. VII. The quality
of the prior directly impacts the success of foveation, with
inaccurate priors potentially misallocating memory resources
into incorrect regions. This dependence implies a trade-space
between depth prior accuracy, and the amount of resources
foveation stands to reduce. Exploring this trade-space is out
of the scope of this paper, rather, we focus on using priors
that are prone to error or are otherwise lower quality.

In the following subsections, we will define the image
formation model, detailing the assumptions and mechanics of
photon detection. We will then explore the effects of ambient
light on SPAD histogram formation and discuss how the
proposed foveation techniques provide an advantage.

B. Image Formation Model

We assume that each pixel in the SPAD sensor array is co-
located with a pulsed laser illumination source with a Gaussian
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TABLE I
MATHEMATICAL SYMBOLS USED IN THIS PAPER TO STUDY THE FOVEATED

SPAD IMAGING MODEL.

Symbol Meaning

N Number of bins across full histogram
M Number of bins across foveated histogram
i Bin location of corresponding to true scene depth
Z Working volume of the sensor
T Temporal volume calculated from Z and speed of

light
SNR Signal-to-noise ratio
SBR Signal-to-background ratio
C Number of cycles to create histogram
Φsig Mean number of signal photons received per bin
Φbkg Mean number of background photons received per

bin
pgt Probability that a detected photon originated from

the laser
pmultipath Probability that a detected photon experienced mul-

tipath bounces
pfloor Probability of a low noise floor
S Number of pixels in the camera

pulse shape. Assuming no multi-path or sub-surface scattering
effects, the photon flux incident on each pixel consists of
a superposition of laser photons (that arrive in a short time
window corresponding to the round-trip time-of-flight to and
from the scene point) and background photons due to ambient
light (that arrive uniformly randomly distributed throughout
the capture duration). The laser repetition period (T ) deter-
mines the maximum depth range of the SPAD LiDAR. We
assume that this period is discretized into N bins (N is often
on the order of 1000’s of bins in conventional SPAD cameras).
The number of photons captured by the SPAD pixel in the
nth bin (1 ≤ n ≤ N ) is Poisson distributed with a mean of
Φsig1(n = i)+Φbkg where i is the bin location corresponding
to the true scene depth. Various sources of noise such as dark
counts and afterpulsing are assumed to be absorbed in the Φbkg
term. A complete histogram captured by this SPAD pixel over
C laser cycles is given by a Poisson random vector with mean
CΦsig1(n = i) + CΦbkg for 1 ≤ i ≤ N.

The simplified imaging model assumes all laser photons
arrive in a single bin i. In practice, the laser pulse spans several
bins “smearing” the signal photons over more than one bin.
The laser peak is often modeled as a Gaussian shaped pulse;
we use a 1 nanosecond full width at half maximum (FWHM)
in our simulation results. Since the peak can span more than
one histogram bin location, the defined Gaussian pulse may
be used to estimate depth through match filtering. It is also
possible to obtain a pseudo-intensity image by aggregating
photon counts across histograms for each pixel which can
be used in lieu of a co-located RGB or monochrome camera
image for monocular depth cues.

C. Effects of Ambient Light

The integration time taken for all experiments is consistent.
In this scenario, we show how foveation saves memory or
improves depth resolution, and how the signal-to-noise ratio
changes depending on ambient light, bin width, and the
number of laser cycles or exposure time.

Consider a SPAD pixel imaging a scene point illuminated
by a pulsed laser. Initially, let us assume there are no multi-
bounce effects and no ambient light, although we address these
issues later on.

Photon detections from the SPAD pixel generate a histogram
of arrival times. A conventional approach would use all N
bins across the full histogram, whereas we propose methods
to foveate attention onto a subset M ≤ N of these bins, where
M is a window or gate with a user defined width (number of
bins). Therefore, it is not surprising that, in the SNR analysis
of our system, the ratio M

N appears since this represents the
advantage due to foveation.

In the analysis below, we will not make any assumption
as to how the foveated bins M were obtained and instead
just characterize the advantage of these, given that the desired
histogram peak is captured by these bins. The analysis is not
specific to any one method of acquiring a depth prior. In
Sections IV, V, VI, and VII we propose algorithms to drive the
selection of the foveated bins M and in Sect. VIII we provide
a worst case analysis for whether the foveated M bins capture
the histogram peak or not.

1) Low Ambient Light (No Pileup): Now consider the
conventional imaging case, where the SPAD sensor detects
time-of-arrival of photons and accumulates into a photon
timing histogram to find the time that corresponds to the true
depth of the scene point.

We assume that the histogram has a full scale range of T
seconds which is related to the maximum unambiguous depth
range Z as T = 2Z

c where c is the speed of light. Consider
N histogram bins that are uniformly distributed across the full
scale range T . The width of each bin is T

N . Since narrower bins
produce fewer photons, the SNR for each bin is proportional
to the width of that time bin:

SNR ∝ C

√
T

N
, (1)

where C denotes the number of laser cycles (i.e., the total
exposure time) that was used to capture the histogram.

We now consider two types of foveation. In memory
foveation, only a limited number of bytes in memory can
be dedicated to the task of finding the histogram peak, and
therefore placing these at the peak is most efficient. In depth
foveation, memory allocation remains fixed but is concentrated
in the foveated region, bringing the bins closer together near
the histogram peak, thereby improving depth resolution.

Memory foveation: In memory foveation, we identify M bins
M ≪ N where the true depth exists. The width of the bins
remains the same T

N , and therefore the SNR is also identical
to the conventional case:

SNR ∝

√
M T

N

M
∝

√
T

N
(2)

Depth foveation: In depth foveation, we concentrate the N
bins that would have been distributed over the entire depth
range, into a small region. The region is the same region used
in memory foveation, and is given by multiplying the number
of memory foveation bins M with the original bin width to
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give M T
N . This region is divided into N bins, and therefore

the new bin width is MT
N2 . As before, the SNR is proportional

to the bin width, and therefore much lower,

SNR ∝ C

√
MT

N2
=

√
M

N

T

N
(3)

Therefore, we have improved depth resolution but at the
cost of SNR. To increase the SNR of the foveated depth we
can increase C, the number of cycles the laser pulses through
to create the histogram. The new cycle number must be equal
to or greater than Cnew

C ≥ N2

M2 , then,

SNRnew ∝ Cnew

√
MT

N2
= C

√
T

N
. (4)

In summary, memory foveation reduces memory usage with
no change in SNR. Depth foveation increases depth resolution
but with reduced SNR that can be compensated by more laser
photons (i.e. longer exposure).

Below, in alg. 1, we define the general algorithm for
memory and depth foveation. Note that the algorithms are
independent of depth prior, and the spatio-temporal step, which
we show in sec. V, is optional.

2) Strong Ambient Light (Pileup): With strong ambient
light, we now focus on the signal-to-background ratio (SBR),
defined in [46] for SPADs as the ratio of the total number
of signal photons to the total number of background photons
received over each laser cycle. W.l.o.g, here we note that
the SBR is proportional to the probability of receiving signal
photons divided by the probability of receiving background
photons.

With ambient light, photons from both the laser source and
the ambient illumination may be measured by the SPAD. Each
time a photon is detected, the SPAD sensor resets creating a
pause. It is this pause that creates a binomial model for image
capture in SPADs [46], [47].

Therefore, the SBR analysis cannot simply compare the
photon bin widths as in the prior section for the full resolution
(N bins) and the foveated resolution (M bins). Instead, SBR
calculations must include the probability of photons from the
source vs. the background.

Conventional scenario: Let us first consider the SBR in
the conventional case, with no foveation. From [47], using
the Poisson model for photon distribution, we can write the
probability of a photon from the laser incident on the bin
corresponding to the correct depth as plaser = (1 − e−Φsig).
Correct depth detection will happen even if an ambient photon
is detected at the correct depth, so the probability of correct
depth detection is pcorrect = (1− e−(Φsig+Φbkg)).

Let i be the location of the bin corresponding to the correct
depth of the scene point. This photon is only detected at i if, in
addition, no photon from the laser is detected at any prior bin.
Since the laser photons only show up at bin i, constrained by
depth, the probability of the photon showing up at any other
bin is zero. However, in this conventional scenario, photons
from ambient light could show up at any prior bin to i, pausing
detection at bin i. Therefore, the probability that the photon

Algorithm 1 Memory and Depth Foveation
Require: Total histogram bins N , Temporal Volume T , Num-

ber of foveated bins M , Total histogram bins for depth
foveation N ′

1: Calculate bin widths
∆t = T

N , ∆tdepth = T
N ′

2: Acquire a depth prior:
Monocular Sec. IV, Optical-Flow Sec. VI, Low-

Resolution Super-Pixel Sampling Sec. VII
3: for (x, y) ∈ S do
4: Utilize the depth prior to find d̂(x, y)
5: Center foveation window M around d̂(x, y)

Memory Foveation:
6: Capture histogram in the foveated window with bin

width ∆t and M number of bins
Depth Foveation:

7: Capture histogram in the foveated window with bin
width ∆tdepth and N ′ number of bins

8: end for
9: return Histogram image H

10: Decode depth image D. H → D

Optional Spatio-Temporal steps:
11: Quantization Based Sampling Sec. V
12: Quantize depth prior into discrete buckets B
13: Select several pixels in each bucket at random. S → Ŝ
14: Complete steps 3-10 with Ŝ
15: Quantize sparse depth map. D(B) = min(D(Ŝ) ∈ B)
16: SuperPixel Based Sampling Sec. VII
17: Acquire a pseudo-intensity map through photon count-

ing
18: Apply the superpixel algorithm to segment the pseud-

intensity map
19: Sample the centroid of each superpixel segment at full

histogram resolution. d̂SP
20: Complete steps 3-10 with S and d̂SP

from the laser is detected at the correct depth is psig = (1 −
e−(Φsig+Φbkg)) e−Σi−1

1 Φbkg .
The situation is different for ambient photons, which can

arrive at any time instant before photons from the ith bin arrive.
We can write the probability that an ambient photon is detected
at location q as pqbkg = (1 − e−Φbkg) e−Σq−1

1 Φbkg . We can
therefore write the SBR proportionality for the conventional
imaging case as:

SBR ∝
psig

pbkg
∝ (1− e−(Φsig+Φbkg))) e−Σi−1

1 Φbkg

Σi
q=1p

q
bkg

. (5)

FoveaSPAD with Ambient Light: We now consider both
memory foveation and depth foveation where the foveated bins
N are given to us. In both these scenarios, we model the arrival
of photons from both ambient and laser sources.

Memory foveation: Consider the foveated bins N , which we
assume contain the bin with the histogram peak. Suppose the
closest index for these bins is j. Then, the SBR increases,
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Fig. 2. Qualitative Comparison on NYUv2 Our memory and depth foveation techniques produce quality depth reconstructions with a fraction of the memory
usage. Each row consists of the NYUv2 ground truth images, the monocular depth output from ZoeDepth, a simulated SPAD output with N′ bins, and our
foveation techniques. The rows show different combinations of M and N′, where M is the number of bins in the foveated histograms, and N′ is the limited
number of bins used for depth foveation. Monocular estimation is just one method of obtaining a depth prior in a class of methods, in sec. VI and sec. VII
we show two more methods.

since the histogram sensitivity is unaffected by photons that
impact the sensor before bin j.

SBR ∝ (1− e−(Φsig+Φbkg)) e−Σi−1
j Φbkg

Σi
q=jp

q
bkg

. (6)

In the extreme case, where we have perfect foveation, and
i = j, then the terms for ambient light before bin i become 1,

SBR ∝ (1− e−(Φsig+Φbkg)). (7)

i.e. in other words, the effect of foveation is to remove the
dependence on prior photon arrival for detection, since these
no longer delay the measurement of photons at the ith bin.
This “perfect foveation” SBR term is dependent on the ratio
of the strength of the laser and ambient signal directly and
is not constrained by the binomial nature of SPAD photon
capture.
Depth foveation: Since we concentrate all N bins into the
foveation window, we are again susceptible to the binomial
nature of SPAD photon capture. In addition, the bins are
smaller to fit within the window, and as described in the non-
ambient light section, the bin width is reduced as M

N .
We can write the probability that an ambient photon is

detected at location q as pqbkg = (1− e−
M
N Φbkg) e−Σq−1

1
M
N Φbkg .

The SBR proportionality also shows the effect of reduced
signal strength as:

SBR ∝
psig

pbkg
∝ (1− e−(M

N (Φsig+Φbkg))) e−Σi−1
1

M
N Φbkg

Σi
q=1p

q
bkg

. (8)

In summary, memory foveation increases SBR. While depth
foveation has the same SBR as conventional capture, it im-
proves depth resolution. It is this theory that motivates the
remaining simulation results in the paper, where we explore
different ways of creating depth and memory foveation for
SPAD sensors.

IV. SPAD FOVEATION FROM MONOCULAR DEPTHS

With the imaging model defined, we proceed to our first ex-
periment, demonstrating how our memory and depth foveation
techniques can effectively work with a monocular depth prior.

Monocular depth estimation is inherently brittle due to
biases in training datasets, whereas SPADs provide high-
accuracy sensor measurements. In this section, we leverage
the less accurate monocular depth to reduce the number of
SPAD bins needed for capturing data, thereby saving memory
and improving depth resolution.
Simulation Details: We conducted our simulations using the
SPAD simulation framework provided in Gutierrez-Barragan
et al. [5], [48], utilizing the code available on GitHub. While
the simulations are initialized with RGBD datasets, all “ground
truth” depth images presented in this paper result from SPAD
simulation on full high-resolution histograms.

Monocular depth estimation algorithms use visual cues from
2D images to infer depth information and are trained on an-
notated datasets such as NYU Depth v2 [49] and KITTI [50].
We employed ZoeDepth [51], a monocular depth estimator
chosen for its performance and ability to produce metric depth
estimates. The monocular depth is used to guide a foveation
window consisting of M bins in the histogram. The window
size is a hyper-parameter, with larger sizes offering better
accuracy at the cost of reduced efficiency.

For effective use of the monocular estimate as a prior, it
must provide metric depth, and to enhance foveation perfor-
mance, it needs to be scaled to match the scene. ZoeDepth ful-
fills the metric depth requirement, and we ensure compatibility
with the dataset through appropriate scaling and bounding.

We chose a polynomial fit for scaling, observing that a ma-
jority of points in a randomly selected subset of the monocular
output for the NYUv2 dataset exhibited a linear relationship.
This scaling can be performed either locally, fitting the data to
a specific scene, or generally across the dataset. In both cases,
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a small set of pixels is sampled at full histogram resolution,
and the relationship between the monocular estimate and the
SPAD estimate at these pixels is modeled. The fit is then
applied to the entire monocular estimate, with bounds enforced
for the minimum and maximum values across the dataset,
which are 0m and 10m for NYUv2.

We now describe our results shown in Fig. 2 and evaluated
in Table II which are calibrated locally. The first two columns
in the figure show the ground truth from the NYUv2 dataset.
The depth is not simply the depth from the NYUv2 dataset,
but the output of full-resolution SPAD simulation followed by
the detection of the histogram peak. The third column shows
the scaled monocular output.
Memory Foveation: The fifth column in Fig. 2 shows our
memory foveation results. Here, most bins are not used, saving
memory for the same SNR. The foveated window is given at
the right of the figure as a fraction of the original number of
bins N , with N set to 1000 bins for all experiments. The
results are visually indistinguishable from ground truth, in
some cases with a 1

16 save in memory. In Table II we show
the change in accuracy with these memory savings. Unsurpris-
ingly, there is an inverse relationship between memory usage
and depth error.
Depth Foveation: In Fig. 2 the foveated window around the
estimated monocular depth is packed with a limited number
of bins. With no foveation, as in the fourth column, a limited
number of bins N

′
are distributed over the entire SPAD

volume. The depth foveation in the last column shows what
happens when these limited number of bins are packed into the
foveated window. Note that the depth resolution has increased
from the limited bins case because the samples are placed
within a foveated window where we expect to find the his-
togram peak. In Table II, entries with the same memory usage
demonstrate the effects of depth foveation, where higher depth
resolution consistently produces better results. These depth
foveation outcomes are directly dependent on the memory
foveation results, as both algorithms place fovea windows
based on the same depth prior, with the depth foveation
experiments having a lower depth resolution. Meaning, the
memory foveation results establish a lower bound for the depth
foveation error. Additionally, the limited bins case, which is
not confined to a foveated window and thus reliant on a depth
prior, shows that the error continues to decrease as depth
resolution increases.

V. SPATIO-TEMPORAL SPAD FOVEATION

The previous section seeks to reduce the SPAD histogram
bottleneck by reducing the number of bins to examine per-
pixel with a monocular estimate prior. This section aims to
improve these savings by incorporating spatial foveation. By
exploiting depth coherencies and applying foveated windows
to a small selection of pixels we show an order of magnitude
increased bandwidth savings.

Foveated LiDAR systems [31]–[33] can place samples onto
depth edges and recover the rest of the scene, post-capture,
through algorithmic estimation such as deep guided upsam-
pling or gradient-based reconstruction. Similarly, here, we

place samples across depth edges and, rather than use an
algorithm, we use the SPAD measurement to provide correct
depths in redundant areas.
Quantized Sampling: Our approach to spatial sampling
begins by quantizing the prior through thresholding, resulting
in digitized regions that we refer to as ‘buckets.’ We make the
assumption that the values within each quantized bucket are
redundant. From each bucket, we randomly select pixels and
use the SPAD to measure these points in the scene, applying
memory foveation in the process. These measurements provide
a sparse depth map, which we subsequently sort and quantize
based on the buckets defined by the depth prior.

In Fig. 3 we show examples of our approach, where the
first two columns show the scene and ground truth depths.
The third column is a quantized version of the monocular
depth estimation, where the number of quantized buckets is
64. For each of these buckets, we picked 50 points at random
and recovered the SPAD depths of these points. Note that
these transients were also foveated in time, using the method
described in the previous section. The fourth column in Fig.
3 depicts exactly those points in the SPAD camera that were
sampled, with the number of bins sampled at 1

16 of the original
histogram. This is a factor of 1548 memory savings, compared
to the ground truth measurement, with depth results in the last
column. These efficiencies are evaluated in Table III.

VI. OPTICAL FLOW DRIVEN SPAD FOVEATION

In previous sections, we focused on static scenes. However,
one of the key advantages of using SPAD arrays is their fast
capture speed, making them ideal for dynamic environments,
such as when mounted on a vehicle. In this section, we
demonstrate how our techniques can be applied to moving
scenes by utilizing optical flow to guide the foveation process.

Consider a SPAD sensor on a moving platform, say an
autonomous vehicle, where high-frame rate and efficient depth
capture are important [52], [53]. The foveation algorithm
described in the previous section analyses pixels in each frame,
reducing the bins in the histogram that need to be processed.
Here we consider an approach to reduce the computation even
further, using temporal information by transferring foveation
information from previous frames to subsequent frames.

Consider a sequence of frames containing both depth and
reflectance information from a scene. Assume that the depth
in the first frame is reconstructed at high quality, such as
from full-resolution SPAD histograms. Now, for a subsequent
frame, we can calculate optical flow between the frames (color
or grayscale), producing a vector (u, v) for each pixel at a
given time t. These vectors satisfy the brightness consistency
principle, meaning that I(x+u·δt, y+v·δt, t+δt) = I(x, y, t).
holds true. We use the depth information from the previous
frame to guide the positioning of the foveating window in the
current frame, by warping the previous frame based on the
vector (u, v). Although the object may move and the histogram
peak will shift from frame to frame, it will remain within
a nearby range, allowing a window of pixels to recover the
histogram peak in the current frame.

However, optical flow is never perfect, often having errors at
the edges of a frame. Further, these propagate incorrect depths
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TABLE II
MEMORY AND DEPTH FOVEATION EVALUATION - LOCAL SCALE THIS TABLE SHOWS A QUANTITATIVE COMPARISON OF RMSE AND DEPTH INLIER

METRICS FOR DIFFERENT DEPTH AND MEMORY FOVEATION STRATEGIES FOR THE NYUV2 DATASET AND A MONOCULAR ESTIMATION PRIOR. FOR EACH
MEMORY FOVEATION FRACTION, WE VARY THE NUMBER OF HISTOGRAM BINS IN THE FOVEATED SUB-WINDOW TO ACHIEVE DEPTH FOVEATION.

METRICS USED FROM LEFT TO RIGHT: ROOT-MEAN-SQUARED ERRROR, ABSOLUTE log10 ERROR, ABSOLUTE RELATIVE ERROR, δ < 1.25, δ < 1.252 ,
δ < 1.253

M RMSE↓ log10↓ REL↓ δ1↑ δ2↑ δ3↑ N′ RMSE↓ Lim. Bins↓ log10↓ REL↓ δ1↑ δ2↑ δ3↑
(Fraction) (m) (m) (%) (%) (%) (Num. Bins) (m) RMSE (m) (m) (%) (%) (%)

1/16 0.211 0.0106 0.0211 97.07 99.13 99.55 16 0.235 0.504 0.0173 0.0360 96.55 98.96 99.48
32 0.211 0.250 0.0119 0.0241 97.1 99.14 99.55
64 0.211 0.121 0.012 0.0242 96.44 99.01 99.54

1/8 0.151 0.005 0.0109 98.36 99.42 99.79 16 0.201 0.509 0.018 0.0418 97.87 99.26 99.71
32 0.184 0.250 0.011 0.0254 98.1 99.38 99.77
64 0.152 0.121 0.0064 0.0141 98.36 99.45 99.81

1/4 0.117 0.0032 0.00686 99.24 99.57 99.79 16 0.221 0.501 0.0326 0.0714 98.77 99.6 99.82
32 0.166 0.2497 0.015 0.0355 99.15 99.59 99.82
64 0.145 0.123 0.0087 0.0195 99.01 99.52 99.78

D
epth (m

)

NYUv2 RGB NYUv2 Depth Quantized Mono. Sparse Samples 1% Depth FoveaMemory Fovea

D
epth (m

)
D

epth (m
)

D
epth (m

)

Fig. 3. Spatio-temporal foveation The first two columns display the scene’s color and ground truth depth. Using the quantized monocular depth in the
third column, we select certain pixels in the fourth column. Processing only histograms at these locations with foveated windows generates results in the last
column, indicating a 1548-fold reduction in memory usage. This is calculated by measuring memory allocation for full-res and spatio-temporal histograms.
The results shown are with M=1/16N and N′ = 16

through time, since our optical flow method only considers the
depths in the previous frame. To remove this error, we compare
the distribution of the photons under a foveated region to that
from a noise floor. If they match, we ignore the erroneous
optical flow, and recompute depth from the full histogram. In
practice, this is done by thresholding the values in the foveated
window.

In Fig. 4, we show some optical flow results. Please see
the supplementary video for all of our video results. These
were created on the CARLA simulator [54] and the results
show two street scenes with ground truth depths. We found
the native optical flow in CARLA to be noisy, and so we
used OpenCV’s in-built optical flow estimator. The third and
fourth columns show first the incorrect results from optical

flow, and our method to detect these regions, shown in red. The
optical flow driven depth foveation results are shown in the
last column. Calculating errors using a running average across
all video frames reveals compounding errors over time. In the
first scene, at 1

10N , RMSE and SSIM are 101.9m and 0.530,
and at 1

4N , 38.6m and 0.884. In the second scene, RMSE and
SSIM are 0.164m and 0.87 for both 1

10N and 1
4N .

VII. HARDWARE EMULATION RESULTS

In this section, we present hardware emulation results for
depth and memory foveation using SPAD data captured using
real hardware. The goal of hardware emulation study is to de-
risk future in-pixel implementations of foveation algorithms.
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TABLE III
SPATIO-TEMPORAL FOVEATION EVALUATION - LOCAL SCALE HERE WE LOOK AT A QUANTITATIVE COMPARISON BETWEEN THE SIZE OF THE

FOVEATION WINDOW (MEMORY USAGE), THE NUMBER OF BINS IN DEPTH FOVEATION, AND THE NUMBER OF TOTAL SAMPLES PER THE
SPATIO-TEMPORAL ALGORITHM.

Sp
ar

si
ty

=
0.

26
% M RMSE↓ log10↓ REL↓ δ1↑ δ2↑ δ3↑ N′ RMSE↓ Lim. Bins↓ log10↓ REL↓ δ1↑ δ2↑ δ3↑

(Fraction) (m) (m) (%) (%) (%) (Num. Bins) (m) RMSE (m) (m) (%) (%) (%)
1/16 0.39 0.06 0.124 84.901 97.054 99.429 16 0.649 0.509 0.102 0.15 83.788 95.189 96.514

32 0.687 0.251 0.103 0.151 81.556 95.272 96.972
1/8 0.392 0.068 0.137 80.154 94.812 99.046 16 0.738 0.502 0.129 0.19 71.23 91.362 95.817

32 1.055 0.269 0.17 0.202 69.595 89.694 92.852
1/4 0.355 0.054 0.10 88.244 98.114 99.186 16 0.756 0.497 0.131 0.199 67.472 92.431 96.184

32 0.837 0.25 0.137 0.202 68.609 86.771 93.232

Sp
ar

si
ty

=
0.

52
% M RMSE↓ log10↓ REL↓ δ1↑ δ2↑ δ3↑ N′ RMSE↓ Lim. Bins↓ log10↓ REL↓ δ1↑ δ2↑ δ3↑

(Fraction) (m) (m) (%) (%) (%) (Num. Bins) (m) RMSE (m) (m) (%) (%) (%)
1/16 0.414 0.07 0.12 87.672 97.008 98.139 16 0.582 0.505 0.092 0.134 86.543 96.111 97.068

32 0.484 0.25 0.07 0.119 87.664 96.492 98.158
1/8 0.387 0.051 0.108 87.292 99.162 99.919 16 0.518 0.519 0.071 0.136 84.049 98.177 99.255

32 0.587 0.248 0.074 0.142 78.714 94.945 97.969
1/4 0.38 0.049 0.0996 90.254 96.965 98.365 16 0.734 0.518 0.121 0.184 74.702 93.679 96.225

32 0.553 0.256 0.068 0.127 85.968 96.942 98.09

Sp
ar

si
ty

=
1.

04
% M RMSE↓ log10↓ REL↓ δ1↑ δ2↑ δ3↑ N′ RMSE↓ Lim. Bins↓ log10↓ REL↓ δ1↑ δ2↑ δ3↑

(Fraction) (m) (m) (%) (%) (%) (Num. Bins) (m) RMSE (m) (m) (%) (%) (%)
1/16 0.288 0.039 0.0855 94.214 99.582 99.935 16 0.364 0.508 0.048 0.0959 93.693 99.248 99.646

32 0.412 0.254 0.051 0.0933 93.048 98.179 99.145
1/8 0.313 0.04 0.0881 91.782 99.443 99.841 16 0.386 0.495 0.056 0.111 90.719 99.057 99.474

32 0.432 0.257 0.053 0.106 89.662 98.472 99.276
1/4 0.274 0.035 0.0786 94.264 99.045 99.875 16 0.471 0.503 0.072 0.148 82.311 97.104 98.821

32 0.399 0.25 0.063 0.111 91.482 97.966 98.643

Carla RGB Carla GT Depth Optical Flow Driven Optical Flow Error Ours

M = 1/4N

M = 1/10N

M = 1/4N

M = 1/10N

Fig. 4. Optical Flow Driven Foveation Here we see our optical flow driven SPAD foveation using the Carla simulator whose color and ground-truth depth
are shown in the first two columns. Directly using optical flow, as shown in the third column, creates errors that propagate over time. We correct for the
optical flow error by detecting those pixels whose foveated windows are close to the noise floor. The last column shows the final optical flow driven foveated
depth at different window sizes. Please see the supplementary for video results.
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Fig. 5. Hardware emulation results for scenes from Lindell et al. [4]. (Column 1) The Lindell dataset consists of monochrome images captured by a
camera co-aligned with the SPAD sensor that captures photon data cubes. (Column 2) We obtain monocular depth maps from these monochrome images.
(Column 3) Raw photon data cube without foveation shows a “cloud” of background photon detections. (Column 4) Maxima detection on low SBR photon
clouds leads to unusable depth maps. (Column 5) The CNN-based algorithm of Lindell et al. improves depth map reconstruction. (Column 6) Our approach
relies on memory foveation in a 1/4th size sub-window around an estimate of the true depth obtained from monocular depth maps. Observe that the photon
data cubes are less noisy. (Column 7) Even a simple max-estimator provides better depth map estimates after foveation. (Column 8) Providing foveated clouds
to the CNN denoiser of Lindell et al. further improves reconstructions.

We use datasets by Lindell et al. [4] and Gutierrez-Barragan
et al. [5] from prior sources [46], [47].

A. Using Monocular for Memory Foveation

We’ll start by showcasing how our memory foveation tech-
nique works on the dataset by Lindell et al. [4] by using
monocular as a prior. The Lindell dataset consists of scenes
under different ambient illumination conditions captured using
a linear SPAD pixel array [55] co-aligned with a monochrome
camera that captures intensity images.

We use these intensity images to obtain a monocular depth
prior. Because the performance of monocular estimation net-
works is dependent on the dataset, we perform a calibration
step by using the “elephant” scene in the dataset to define a
global scaling function. We place foveation windows of 1/4th
the total temporal extent of the full histograms centered around
these scaled monocular depth estimates for each pixel.

Memory foveation improves the overall SBR, in a scene-
adaptive manner, by focusing on regions of the spatio-temporal
photon cube where signal photons arrive. Comparing columns
3 and 6 in Fig. 5, foveated SPAD measurement cubes show
fewer background photon detections, with clear 3D object
structure in the photon cubes. Depth estimates are improved
even with a simple maxima-detection approach — observe
that the lamp is barely visible in the non-foveated maxima-
detection-based depth map in column 5, but is visible after

memory foveation in column 7. Running memory foveated
measurements through the denoising algorithm of Lindell et
al. further improves the depth map, as seen in the last column
of Fig. 5.

B. A Different Approach to Spatio-Temporal Foveation

To illustrate the flexibility of our foveation techniques
and their independence from external sensors as a prior,
we propose an alternative spatio-temporal method, which we
apply to two scenes from the Gutierrez-Barragan et al. dataset
[5], for which there is no co-located camera. The dataset is
captured using a single-pixel point scanned SPAD detector
co-aligned with a pulsed laser. Fig 6 shows the results of
the alternate approach for the single object “face-vase” and
“reindeer” scenes, with the RGB images shown in column 1
for visualization purposes.
SuperPixels: Because there is no intensity map captured in the
dataset, we instead obtain a pseudo-intensity map by summing
the raw photon data cubes along the temporal axis for each
pixel. In a real hardware implementation, this process would be
achieved by utilizing a counter in each SPAD pixel, a feature
commonly available in existing commercial SPAD arrays. We
then run a superpixel algorithm [56] on the pseudo-intensity
maps to obtain coarse segmentations of the scene, as shown in
column 3. For each superpixel segment, we capture a complete
(non-foveated) histogram of the centroid pixel. By identifying



11

Fig. 6. Hardware emulation results for scenes without co-aligned monochrome camera [5]. (Column 1) RGB images of the “face-vase” and “reindeer”
scenes shown for visualization. (Column 2) A pseudo-intensity image is estimated by accumulating photon counts for each pixel. (Column 3) Pseudo intensity
maps are converted into superpixel representations, and a single pixel in each superpixel is used for measuring complete histograms. (Column 4) The peak
location of the chosen pixel is used to apply foveation windows of 1/4th the total temporal extent for the remaining pixels in each superpixel. (Column 5)
Ground truth depth maps obtained using matched filtering. (Column 6) Our result requires 64× less memory per pixel for > 99% of the pixels in these
scenes.

the true peak location in this histogram, we can then foveate
within a 1/4th sub-window centered around this peak for
all remaining pixels in the superpixel segment, reducing the
overall bandwidth requirement per pixel by a factor of 64.

In the “face-vase” scene, with a spatial resolution of 174×
154 pixels, the segmentation reduces the data to 473 superpix-
els. Similarly, the “deer” scene, originally at 204×116 pixels,
is reduced to 515 superpixels. This reduction translates to a 3/4
reduction in memory requirement for approximately 99.98%
pixels in both scenes. Examples of foveated histograms in
column 4 show that the laser impulse response function
has a non-ideal shape which departs significantly from the
commonly assumed Gaussian shape used in simulation studies.
(The second peak is likely due to optical inter-reflections in the
hardware setup). Yet, our method is able to produce reliable
depth maps (columns 5 and 6).

We also examine the impact of reconstruction error under
increasing background noise for the ”deer” scene. As shown
in Fig. 9, foveation allows for the accurate selection of the
correct depth peak, even in the presence of strong background
illumination, thereby expanding the operable SBR range in
practice.

VIII. LIMITATIONS AND DISCUSSION

Worst Case Stochastic Limits: We explored the limitations
of our approach by analyzing the worst-case scenario where
depth is incorrectly detected due to various errors, such as
monocular depth calibration issues, ambient light interfer-
ence, and global effects like multipath inter-reflections. We
characterized these errors using a probabilistic framework.
Specifically, we defined the probability pgt as the chance that

a detected photon originates from the laser i.e. single-bounce
photons, pmultipath as the probability of multipath photon de-
tection, and pfloor as the probability of spurious peaks due
to sensor noise. The overall probability of accurate depth
detection is given by

pgt(1− pgtpmultipath)
M−1pfloor, (9)

where M is the number of foveated bins. We further derived
the probability pworst for the worst-case scenario, where none
of the S pixels detect the correct depth, expressed as

pworst = (1− pgt(1− pgtpmultipath)
M−1pfloor)

S . (10)

Through optimization, we identified two conditions that lead
to this worst-case scenario, linked to specific relationships
between pgt, pmultipath, and M .

• The first condition occurs when pgt = 1
pmultipath

. This
situation arises when the probability is 1 for every bin
to contain both direct photons from the laser and pho-
tons that have undergone multipath effects, indicating a
degenerate scene, such as one made entirely of mirror-
like surfaces.

• The second condition occurs when pgt =
1

M ·pmultipath
. This

scenario implies that the number of foveated bins M and
the probability of multipath effects pmultipath must satisfy
this relationship, under the constraint that 0 ≤ pgt ≤ 1.
This suggests that it is possible to avoid the worst-case
scenario by adjusting the number of bins M for scenes
with specific global illumination characteristics.

In order to illustrate the findings of this analysis, consider a
toy example with a number of bins M = 1000 and pronounced
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Fig. 7. Additional Results: Depth Fovea. This figure demonstrates the application of the depth foveation technique described in Sec. IV to the Lindel
dataset, along with the error correction technique presented in the supplementary material. A window size of M = 1/8 and a bin count of N’ = 16 were used.
The results were subsequently processed using the sensor fusion denoising network [4].
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Fig. 8. Additional Results: Optical Flow and Quantization Spatio-
Temporal. This figure illustrates the application of the techniques described in
Sec. VI and Sec. V to the Lindel dataset. The top portion showcases our optical
flow algorithm on the ”roll” scene. The first column displays the denoised
ground truth, followed by the optical-flow-driven memory foveation result
using maxima detection, and finally the denoised memory foveation result.
The bottom portion of the figure presents our quantization spatio-temporal
foveation technique, utilizing 9.7% sampling to mitigate the high levels of
noise and the abundance of pixels with no photon counts in the scene.

Fig. 9. Effect of increasing background illumination. The conventional
(non-foveated) depth map quality degrades more rapidly as background
illumination increases. Using memory foveation allows reliable depth map
recovery for the “deer” scene for a wider range of SBR levels.

multipath effects, such as pmultipath = 0.1. In the worst case, the
probability of depth recovery would be significantly hindered
pgt = 0.01, but can be improved by changing the number of
bins M at the cost of depth resolution. The detailed derivations
of these results are provided in the supplementary material.
Quality of depth priors: Our algorithms can enable memory-
efficient SPAD sensing while maintaining depth accuracy.
However, our method strongly relies on the accuracy of the
depth prior. If the prior is incorrect, our algorithms may
produce errors, highlighting the importance of robust error
correction mechanisms. We can correct for such errors by
trading off efficiency. We show one example error mask in
the supplementary which can be used to drive corrections,
such as a larger foveation window (using the entire span of
the transient in the extreme case).

Hardware complexity: A key limitation of our approach
is the lack of available hardware that fully supports our
algorithms, necessitating more complex pixel architectures
and driving up costs. Each SPAD pixel in the 2D array
requires a programmable gate, along with a variable TDC and
histogrammer, which increases the complexity and expense
of the hardware. This presents a significant challenge to
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Fig. 10. Future pixel and array designs for foveated single-photon 3D
imaging. (a) A speculative pixel design where individual SPADs are gated
on or off based on thresholds set with respect to a linear ramp signal. Pixels
only need to store the thresholds; the ramp signal is generated externally.
(b) A possible array of SPAD pixels with per-pixel gating. Observe that the
ramp signal is generated globally, simplifying pixel design. Variable-resolution
TDCs and histogrammers are shared by small pixel neighborhoods (e.g., 2×2
multiplexed “macropixels”) to improve fill factor.

the widespread adoption and practical implementation of our
method. In Fig. 10, we propose a potential array design with
per-pixel gating capability, where a global ramp generator
provides individualized on/off thresholds for each pixel. To
enhance the fill factor, the TDC and histogrammer are shared
among groups of neighboring pixels, forming “macropixels”.

We believe the next generation of programmable and
software-defined SPAD cameras [57], [58] will be key enablers
for in-pixel and on-chip implementation of memory- and
energy-efficient foveated sensing schemes. As SPAD cameras
become low-cost and widely available [59], the integration of
in-pixel foveated sensing algorithm proposed here will reduce
memory consumption while maintaining depth accuracy, or
alternatively, provide more accurate depth estimates without
increasing memory usage.
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