

Exploring Physics-Informed Machine Learning for System Matrix Formulation in X-ray Imaging Forward Models

SPIE.

Shajib Ghosh, Nitin Varshney, Md Mahfuz Al Hasan, Antika Roy, Patrick Craig,

Sanjeev J. Koppal, Hamed Dalir, and Navid Asadizanjani

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA

UF UNIVERSITY of FLORIDA

INTRODUCTION

- Limitations of Traditional ML:** Requires large datasets, lacks explainability in X-ray imaging.
- PIML Integration:** Combines physical laws with ML for more accurate models.
- Improved Image Reconstruction:** Enhances accuracy and flexibility in X-ray imaging.
- Key Applications:** Boosts precision in electronics, medical imaging, and material inspection.

There exists a challenge in accurately constructing a system matrix for X-ray imaging forward models, due to *limited datasets, lack of interpretability, and insufficient integration of fundamental X-ray physics*.

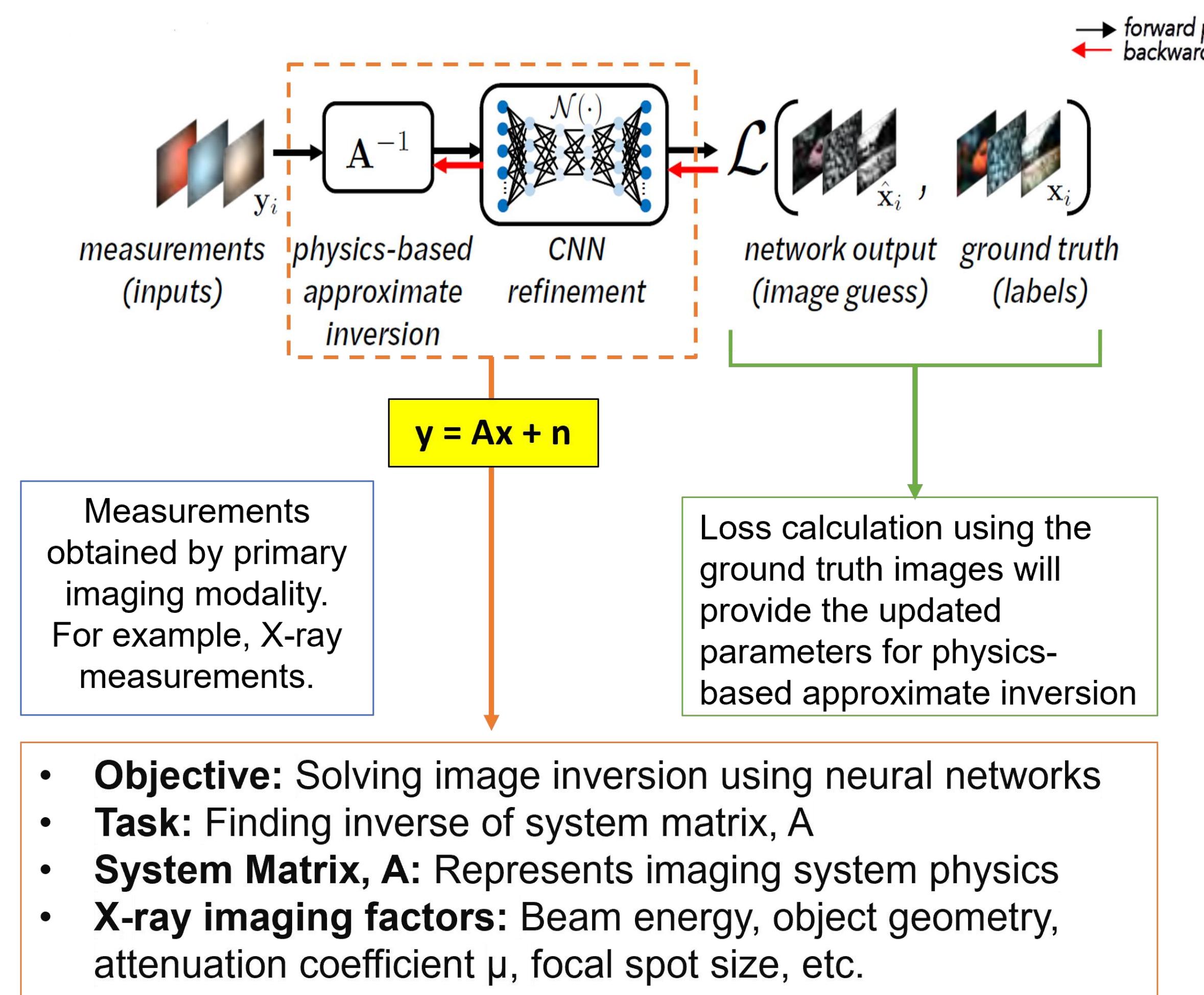


Fig. 1 Applications of Physics-Informed Neural Networks (PINNs) in computational imaging¹

Proposed Solution

- Using Physics-Informed Neural Networks (PINNs) for system matrix construction in X-ray imaging models.
- Embedding X-ray physics, like attenuation and scattering, into the machine learning process.
- Minimizing a loss function that balances data fidelity with physical law compliance.
- Achieving accurate and interpretable results with limited training data.

METHODS

Table 1. Summary of the physical effects, image acquisition parameters, unknown parameters, and corresponding signal models for X-ray computed tomography (CT) imaging²

Physical Effect	Image Acquisition Parameters	Unknown Parameter	Signal Model
X-ray Attenuation	Tube Current (mA)	Attenuation Coefficient	Beer-Lambert Law: $I = I_0 * \exp(-\int \mu(x)dx)$
Scattering	Tube Voltage (kVp)	Scattering Properties	Scattering Model (e.g., Rayleigh, Compton)
Detector Efficiency	Detector Sensitivity	Detector Characteristics	Detector Response Function
Beam Hardening	Filter Material/Thickness	Energy Spectrum	Polyenergetic Attenuation Model
Motion Artifacts	Exposure Time	Patient Motion Parameters	Convolution with Motion Blur Kernel
Detector Noise	Pixel Size	Electronic Noise	Gaussian or Poisson Distribution

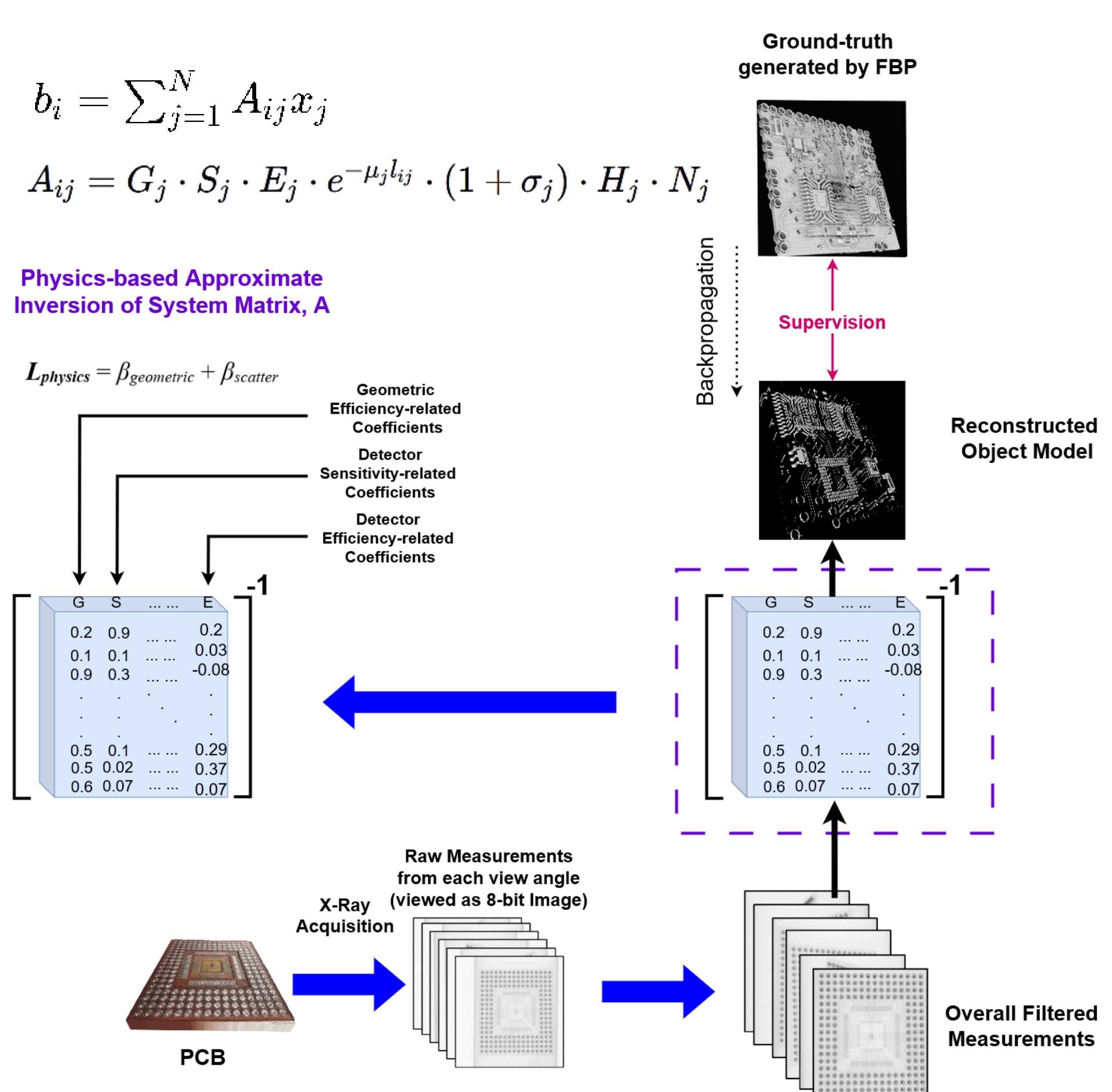


Fig. 2 Physics-Informed Machine Learning (PIML) for system matrix formulation in X-ray imaging forward models: A PCB inspection case study

Influential Factors: Material Properties, Geometric Configuration, Energy Spectrum and Detector Response, Scattering Effects, and Noise Modeling.

DISCUSSIONS

Existing Challenges

- Modeling X-ray interactions with complex materials often leads to errors.
- Scattering in dense materials introduces noise, requiring intensive corrections.
- Minor misalignments in the X-ray system cause significant reconstruction errors.

Future Research Directions

- Advanced modeling of X-ray interactions with complex materials.
- Integration of PIML with real-time feedback for better reconstructions.
- Efficient scatter correction for high-density materials.
- Optimization of geometric setups and noise modeling frameworks..

Advanced modeling of X-ray interactions, PIML integration, efficient scatter correction, and geometric optimization.

CONCLUSIONS

- PIML improves precision, resilience, and interpretability in X-ray system matrices by integrating physical laws.
- Tackles challenges in material interaction modeling and noise reduction, even with limited data.
- Sets the foundation for enhanced X-ray imaging across diverse applications.

Integrating PIML with physical laws has the potential to significantly enhance X-ray imaging accuracy and robustness.

REFERENCES

- Monakhova, K., Ng, R., and Bloom, J., "Physics-informed machine learning for computational imaging," tech. rep., University of California, Berkeley (2022).
- X-ray computed tomography. *Nat Rev Methods Primers* 1, 17 (2021). <https://doi.org/10.1038/s43586-021-00020-7>