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A B S T R A C T

Collecting and analyzing hyperspectral imagery (HSI) of plant roots over time can enhance our understanding
of their function, responses to environmental factors, turnover, and relationship with the rhizosphere. Current
belowground red-green-blue (RGB) root imaging studies infer such functions from physical properties like root
length, volume, and surface area. HSI provides a more complete spectral perspective of plants by capturing
a high-resolution spectral signature of plant parts, which have extended studies beyond physical properties
to include physiological properties, chemical composition, and phytopathology. Understanding crop plants’
physical, physiological, and chemical properties enables researchers to determine high-yielding, drought-
resilient genotypes that can withstand climate changes and sustain future population needs. However, most
HSI plant studies use cameras positioned above ground, and thus, similar belowground advances are urgently
needed. One reason for the sparsity of belowground HSI studies is that root features often have limited
distinguishing reflectance intensities compared to surrounding soil, potentially rendering conventional image
analysis methods ineffective. Here we present HyperPRI, a novel dataset containing RGB and HSI data for in
situ, non-destructive, underground plant root analysis using ML tools. HyperPRI contains images of plant roots
grown in rhizoboxes for two annual crop species — peanut (Arachis hypogaea) and sweet corn (Zea mays).
Drought conditions are simulated once, and the boxes are imaged and weighed on select days across two
months. Along with the images, we provide hand-labeled semantic masks and imaging environment metadata.
Additionally, we present baselines for root segmentation on this dataset and draw comparisons between
methods that focus on spatial, spectral, and spatial–spectral features to predict the pixel-wise labels. Results
demonstrate that combining HyperPRI’s hyperspectral and spatial information improves semantic segmentation
of target objects.
1. Introduction

Researchers have studied the links between root traits and root
function for the purposes of phenotyping and guiding plant choices in
agriculture (Majdi, 1996; Johnson et al., 2001; Delory et al., 2022).
A high-priority task is identifying genotypes and characteristics of
high-yield, stress-tolerant crops that can sustain the projected nutri-
tional needs of 10 billion people by 2050 (Weiss et al., 2020). Studies
have ranged across multiple plants such as cassava (Kengkanna et al.,
2019), maize (Zhan et al., 2019), chicory (Smith et al., 2020), soybean
(Wang et al., 2019; Falk et al., 2020), cotton (Zhao et al., 2022),
wheat (Adeleke et al., 2020), and many other plants (Xu et al., 2022),
and the number of studies continues to grow each year (Delory et al.,
2022). Phenotypic traits such as root length, volume, surface area, and
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count are utilized as features to understand the roots’ functions. Studies
have also related certain physical root characteristics to genotypes
that have better drought resilience (Kengkanna et al., 2019; Liu et al.,
2021). The use of RGB data to do high-throughput plant phenotyping
with rhizoboxes has led to the creation of rhizobox environments and
computer hardware and software that enable quicker and better pheno-
typing experimentation and evaluation (Nagel et al., 2012; Galkovskyi
et al., 2012; Rellán-Álvarez et al., 2015; Falk et al., 2020; Thorup-
Kristensen et al., 2020; Zhao et al., 2022; Pree et al., 2024). However,
the above RGB studies provide an incomplete view of a plant’s root
physiology and root function, and while there has been recent success
in predicting belowground root traits using aboveground HSI data for
peanuts (Ramírez et al., 2023), it is not always clear that a given plant’s
vailable online 17 August 2024
168-1699/© 2024 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.compag.2024.109307
Received 15 October 2023; Received in revised form 26 July 2024; Accepted 1 Aug
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aboveground status during drought is indicative of its belowground sta-
tus (Bagherian et al., 2023). This calls for more analysis of belowground
traits to gain a more complete picture of a plant’s drought response.

Current methods of acquiring root traits are both destructive and
non-destructive. Destructive methods include digging up plants from
their original placement to image in 2D or 3D settings (Le Bot et al.,
2010; Liu et al., 2021). A common non-destructive method is the use
of minirhizotrons (MRs) (Majdi, 1996; Johnson et al., 2001; Xu et al.,
2022). To be minimally invasive, MR tubes are inserted into the soil
before a plant grows its roots so that root traits may be collected over
time. An alternative to MRs is the rhizotron or rhizobox method that
involves growing plants within boxes made of clear material so that
root traits may be monitored over time (Nagel et al., 2012; Rellán-
Álvarez et al., 2015; Bontpart et al., 2020; Thorup-Kristensen et al.,
2020). Other non-destructive methods include tomography scans, X-
ray CT scans (Atkinson et al., 2019), and MRIs to see beneath the
soil surface (Yang et al., 2020). As a final note, many non-destructive
methods depend on the use of low-cost, low-resolution hardware that
is deployed at scale. Such a constraint gives rise to the need for
techniques of enhancing image resolution so that root trait analysis may
be improved (Ruiz-Munoz et al., 2020; Mishra et al., 2024).

While tomography, X-ray CTs, and MRIs can reveal more types
of roots belowground, they also require a tremendous amount of re-
sources, preventing their deployment in high-throughput applications.
X-ray CTs also have the risk of altering or impeding plant growth (Ter-
amoto et al., 2020; Hou et al., 2022). Besides them, each of the
other references above uses RGB imaging to infer root physiology.
The referenced rhizobox imaging studies tend to focus on phenotyping
through an analysis of the root system architecture, but the physical
characteristics of root length, volume, surface area, and count lack a
complete view of a plant’s status and root function. Studying hyper-
spectral, phenotypic properties invisible to the naked eye can provide
more information on plant physiology (ie. chemical traits McGrail et al.,
2020). Recently, in relation to phytopathology, researchers were able
to use plant leaf spectra to classify healthy and blighted potatoes (Qi
et al., 2023), while others have used HSI data to study a fungi infecting
southwestern white pines (Haagsma et al., 2020). For roots specifically,
studies have utilized near-infrared (NIR) images and HSI (Nakaji et al.,
2008; Bodner et al., 2018) to improve root component classification
and root phenotyping. Nonetheless, we were unable to find a publicly
available visible-NIR or HSI plant root datasets that would allow fur-
ther investigation into the relationship between root spectra and its
surrounding rhizosphere.

In this work, we present a HSI rhizobox dataset containing both
RGB and HSI data along with fully annotated masks for selecting
root and soil pixels. Additionally, we monitor 64 boxes for up to 15
timesteps across two months, and most of the plants go through a
natural dehydration and rewatering process (ie. some were in a control
group). The dataset’s hyperspectral (HS) images over time can reveal a
deeper understanding of the relationship between root characteristics
and root function. By simulating drought conditions, we have acquired
numerous spectral signatures that span the wettest to near-driest soil
conditions. In our experience, the two extremes for soil condition also
represent the easiest (ie. wettest) and most difficult segmentation envi-
ronments (ie. near-driest). We provide images for studying root traits
in both peanut and sweet corn roots, and we apply a subset of peanut
images to the task of semantic segmentation for both types of image
data. Our dataset contains more in-depth evaluation of plant roots
across a broad range of soil conditions that can be applied to studies
on phenotyping prediction (Bodner et al., 2018; Narisetti et al., 2021),
dense root systems (Gillert et al., 2021, 2023), interactive dynamics
between root and rhizosphere (Defrenne et al., 2021), and drought
resiliency (Kengkanna et al., 2019; Zhan et al., 2019). Most recently,
HyperPRI has been used for studying and comparing the crop plants’
drought tolerance and recovery (Song et al., 2024). The data can also be
applied to the tasks of data reconstruction and semantic segmentation.
In this work, we demonstrate that root segmentation is improved with
2

the addition of root and soil spectral signatures.
2. Related datasets

Current methods of acquiring root traits and carrying out root phe-
notyping are either destructive or non-destructive (Liu et al., 2021). MR
technology is a non-destructive method that has been used for multiple
decades to do in-situ monitoring of plant roots (Majdi, 1996; Johnson
et al., 2001). Existing, public MR datasets include RGB root images for
soybean (Wang et al., 2019), chicory (Smith et al., 2020), and multiple
other plants (Xu et al., 2022). Researchers have also measured root
traits and conducted root phenotyping through rhizotron/box labora-
tory setups (Nagel et al., 2012; Rellán-Álvarez et al., 2015; Bontpart
et al., 2020; Lesmes-Vesga et al., 2022), but the imaged rhizoboxes
are not widely available online. Compared to MR, rhizoboxes give
more root information by providing a full view of the root system
architecture. In addition to the above, there is a database containing
multiple root system datasets (Lobet et al., 2013; Lobet, 2017), but
many either are not pictured in-situ or do not have public ground-truth
annotation masks of the root systems.

Although RGB MR or rhizobox studies are becoming more common
(Nagel et al., 2012; Rellán-Álvarez et al., 2015; Bontpart et al., 2020;
Thorup-Kristensen et al., 2020; Lesmes-Vesga et al., 2022), there are
few methods that add spectral reflectance (HSI data) to the list of
root traits (Sarić et al., 2022). In particular, a prior rhizobox study
used spectral information to better differentiate between root classes
(ie. dead, living, rotting, etc.) (Nakaji et al., 2008). Two more recent
studies used spectral signatures to improve root segmentation and to
demonstrate that invisible wavelengths of HSI data can contribute to
better root phenotyping (Bodner et al., 2018; Narisetti et al., 2021).
However, neither of these two studies have made their data publicly
available, and the former of the two studies captures wavelengths
between 900 and 1700 nm (Bodner et al., 2018) and covers a different
wavelength range and larger spectral width (3.1 nm) than our dataset.
There are also no datasets that provide natural dehydration and rewa-
tering processes, and we did not find any RGB or HSI datasets that
provide multiple rhizosphere image timesteps for monitoring roots from
seedling to reproductively mature plants.

In HyperPRI, we provide RGB and HSI rhizobox images acquired
across multiple days over the course of two months. Our dataset
includes fully annotated segmentation masks for all root images and
box weight metadata per each imaged day. The metadata is a series of
box weights (in grams) that includes the empty box, the box with dry
soil, the box with wet soil, and the box weight at each monitored day.
Box weights for each monitored day are limited to those that remained
alive and intact for the duration of the two months. The dataset will be
made available online at doi:10.1101/2023.09.29.559614v1. Based on
our review, there is no other public dataset containing time-series HSI
rhizobox images with fully annotated segmentation masks.

3. Data acquisition and annotation

This section describes the environment and methodology used for
acquiring the imaging data and associated metadata in the context
of machine learning research. The imaging setup involved using the
HinaLea Model 4200 Hyperspectral Imager camera (2018) that images
between the wavelengths of 400 and 1000 nm with a spectral width
of 2 nm (299 spectral bands) and with a resolution of 968 × 608. The
camera allowed us to capture both HSI and RGB images of the plant
boxes at regular intervals throughout the monitoring period. The plants
were closely monitored over a total of two months between June and
August.

Our research involved the use of 64 rhizoboxes that measured a
height-width-depth of 34.5 × 21 × 3.8 cm3 and covered a region that
is 9.3 × 14.8 cm2 near the soil surface of the rhizobox (each pixel
has 0.15 mm spatial width). We constructed the boxes with a clear
plastic sheet (Lexan™) in front and filled them with approximately two

kilograms of Turface soil, accommodating two species: sweet corn and
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Fig. 1. Imaging Setup for HyperPRI Data Acquisition. (a) A sweet corn rhizobox from our data collection on (June 15, 2022), 27 days after planting. (b) Hyperspectral Camera
setup that was used to collect this dataset. The HSI camera at the top captures images in the range 400–1000 nm, the illuminator light (white light) assists in the capturing of
all bands. An aligning block is used to ensure that the rhizobox is always at the same position and the same region is captured.
peanut. The specific growing soil was a fritted calcined clay, Profile
Porous Ceramic (Greens Grade™, Turface Athletics, Buffalo Grove, IL,
USA). To ensure a consistent distance from the lens while acquiring
RGB and HSI data, we used the setup in Fig. 1b, which uses a wood
block to align the rhizobox into the same position in front of the cam-
era. More information about the genotype and specific box number is in
Table 1. Each box was named according to the date of imaging and box
number. The naming scheme followed the format yyyymmdd_boxNN,
where mm denotes the month, dd denotes the day, yyyy denotes the
year, and NN denotes the box number. Fig. 1 shows the imaging setup
on the right and a sweet corn rhizobox example on the left. The authors
primarily annotated the training masks using the RGB images.

Fig. 2 shows the timeline that was followed for data collection. The
peanut seeds were planted in rhizoboxes on May 26, 2022, and the
sweet corn was planted on May 19, 2022 (between Fig. 2b and c). A
subset of boxes from each species was subjected to a dry down period
(16 peanut, 20 sweet corn), while the remaining boxes were regularly
watered to serve as controls. For sweet corn, the dry down period
occurred from June 28, 2022, to July 21, 2022. The dry down period for
peanut took place from August 8, 2022, to August 19, 2022 (between
Fig. 2c and d). More specifically, sweet corn plant roots were imaged
between 26 and 70 days after planting (DAP), and peanut plant roots
were imaged between 22 and 83 DAP. Drought was initiated around
sweet corn’s V7–V9 stage at 39 DAP and around peanut’s R6 stage at 75
DAP. At the end of the dry down period, plants are rewatered (Fig. 2e).

The annotation methodology involved manual labeling of the im-
ages using various tools such as VIA (Dutta et al., 2016; Dutta and
3

Table 1
Species and genotypes of all the boxes in the dataset.

Box numbers Species Genotype

01–16 Sweet corn IL395a
17–32 Sweet corn IL14H
33–48 Peanut TUFRun511 (Tillman and Gorbet, 2017)
49–64 Peanut 10X34-4-4-1-2

Zisserman, 2019), Photoshop, and GIMP. Initially, the annotations were
performed by hand, and as the model improved, active annotation
techniques were employed to enhance the accuracy and efficiency of
the annotation process. The masks have four labels in peanut: 0 - Soil,
1 - Nodules, 2 - Peanut Pegs, 3 - Roots and two in Sweet Corn: 0 -
Soil, 3 - Roots. During our data labeling, we found the nodule and peg
classes to have little representation and chose to collapse the classes
into the simpler task of segmenting roots out of soil. Therefore, for the
segmentation purposes, we put the labels 1, 2 and 3 under roots.

4. Applications

Our dataset has multiple applications. One of the first would be to
utilize HS signatures to supplement existing root phenotypic traits with
more in-depth physiological evaluation (Danilevicz et al., 2021, Root
Phenotyping section). A couple studies have shown improved pheno-
typing prediction through added HS information (Bodner et al., 2018;
Narisetti et al., 2021). Researchers may also use the data to analyze root
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Fig. 2. Plant growth time lapse. Shown is a series of five images labeled (a) through (e), capturing pivotal stages in the research project. (a) and (b), obtained using the HSI
camera, focus on a specific region within the box. (a) presents dry soil conditions, while (b) captures wet soil. As the roots reached the imaged area (c), regular intervals were
established for capturing images to monitor plant growth. Subsequently, a drought initiation phase was implemented, wherein a subset of boxes underwent drought conditions,
while the remaining boxes were regularly watered as a control group. The sequence transitions to (c), (d), and (e), acquired via a user camera, depicting broader perspectives
of the entire box. (c) illustrates the growth stage of the root system, (d) portrays the plant during drought conditions, and (e) presents the rewatered plant. This collection of
images offers a timeline of the experimental design and highlights the different stages of the study, enabling a better understanding of the temporal progression and experimental
manipulations performed during the research. However, it is not representative of our imaging setup to acquire RGB and HSI data.
growth, architecture, and turnover of dense root systems (Gillert et al.,
2021, 2023). Some images contain other potential objects of interest
such as fungus, mold, and algae which may be studied at their various
timesteps to determine possible interactive dynamics between root
and rhizosphere. By example, previous work has studied root-fungal
relationships in peatland (Defrenne et al., 2021).

The additional HSI data can provide researchers with a more in-
formative look at a plant’s health and physiology and may be applied
to drought resiliency and nutrient concentration studies. By taking
advantage of the dehydration and rehydration process in our dataset,
researchers could predict plant water status in response to drought for
two annual crop species (Kengkanna et al., 2019; Zhan et al., 2019).
Creating additional links between HSI data and a plant’s health could
enhance studies addressing micronutrient deficiencies in populations
worldwide (Busener et al., 2020).

HyperPRI also presents ML experts with multiple challenges in root
segmentation. Thin root features, with widths as narrow as 1–3 pixels,
require robust algorithms for accurate identification and segmenta-
tion. Our data has a highly textured soil background that encourages
exploration of texture analysis techniques. Finally, due to the high-
resolution spectral data, reflectance differences between channels are
reduced, meaning that chosen ML algorithms must be able to handle
high correlation to be effective. While addressing the challenge of thin
object features, ML experts can also contribute to solving segmentation
problems with similar characteristics in other domains such as medical
imaging (Li et al., 2021).

5. Segmentation methodology

We perform root segmentation on the subset of peanut roots us-
ing three approaches: spatial, spectral, and spatial–spectral. The first
focuses on using only the RGB data and a UNET architecture (Ron-
neberger et al., 2015) to segment the roots. The second utilizes a
UNET-like autoencoder that has no knowledge of spatial neighborhoods
within HSI data. The final method combines UNET segmentation and
spectral signatures using a UNET with a 3D convolution.

5.1. Data splits

Due to the low amount of data, we chose to evaluate models using
a 5-split cross-validation. Within each split, data is split across boxes
(ie. different days for each box are kept as a group). In other words,
if box 33 is in the training split, this is true for all images from Jun
4

Table 2
Mean, deviation, and max (in parentheses) performance for training a UNET on
Phenotype 1 and Phenotype 2. The Fisher Discriminant Score and p-value metrics are
added to quantify comparisons between the phenotypes. Results are for validating on
Phenotype 2 and Phenotype 1, respectively.

Tr on Phenotype 1 Tr on Phenotype 2 FDS p-value

DICE 0.835 ± 0.001 (0.837) 0.833 ± 0.003 (0.837) 0.0010 0.167
+IOU 0.717 ± 0.002 (0.720) 0.713 ± 0.004 (0.720) 0.0027 0.163
AP 0.909 ± 0.001 (0.913) 0.910 ± 0.002 (0.913) 0.0002 0.366

24 to Aug 21. When deciding the splits for the peanut roots, it was
thought that phenotype 1 (genotype TUF Runner 511) and pheno-
type 2 (genotype 10×34-4-4-1-2) would need approximately equivalent
training–validation representation to prevent bias in learned features.
To understand the peanut subset, we trained a UNET on a portion of
both phenotypes (20 and 19 images, respectively) such that they both
have approximately equivalent timestep representation. When training
UNET from scratch for five random initializations on phenotype 1 (phe-
notype 2) and evaluating on phenotype 2 (phenotype 1), the resulting
DICE, root intersection-over-union (+IOU), and average precision (AP)
values do not demonstrate statistically significant differences between
the two (Table 2 and Fig. 3a). The p-values for all three were computed
with a 2-sided unpaired, unequal variance Student t-test using Excel.

Fig. 3b shows normalized confusion matrix statistics when using the
best threshold per random seed. The normalizing term per row is each
image’s number of true root or soil pixels (ie. normalize TN and FP
with TN+FP). The boxplots show much less variance across TN and FP
samples because the root-soil pixel ratio for this subset of phenotype 1
and 2 images were 0.139 and 0.073, respectively. Fig. 3b also shows
the median TP results are the same, adding further evidence that the
UNET tends to learn similar features between the two phenotypes.

In addition to the above phenotype comparisons, the Fisher Linear
Discriminant Score (FDS) (Fisher, 1936)

𝑆(𝑓 ) =
([𝜇1(𝑓 ) − 𝜇2(𝑓 )]2)
(𝜎1(𝑓 ) + 𝜎2(𝑓 ))

is used as a scoring function to quantify the distance between means
and deviations of two distributions. 𝜇 and 𝜎 are the mean and standard
deviation of DICE, +IOU, and AP results per phenotype (represented
by 𝑓 ). Table 2 shows that – compared to the difference between root
and soil pixels in Fig. 7 – the difference between training results for
the two phenotypes is low. A couple other ways to compare the two
phenotypes are by counting the proportion of certain edge types with
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Fig. 3. Precision–Recall curve (a) and confusion matrix statistics (b) for UNET trained on phenotype 1 and phenotype 2. In (a), Pheno1 and Pheno2 correspond to training on
phenotype 1 and 2, resp. For the confusion matrix statistics, 𝑋-axis labels correspond to which phenotype was used for training data, and red lines show median results across all
splits.
Fig. 4. Edge Histogram Descriptor comparison between phenotype 1 (blue) and 2 (orange). The edge filters are shown in (a), with index increasing from top-to-bottom, left-to-right.
In (b), the measured difference between each EHD bin (red, dashed) demonstrates that the difference between proportions of different edge types is greatest for the horizontal
and vertical edges (index 0 and 1).
edge histogram descriptors (EHDs) (Park et al., 2000) in Fig. 4 and
comparing either the root or soil pixel spectra (Appendix A, Fig. A.15).
In both cases, the computed FDS between phenotype 1 and 2 charac-
teristics remain on the same order as scores in Table 2. Thus, moving
forward, we do not maintain equivalent phenotypic representation in a
5-split organization of the dataset but do maintain an approximately
equivalent training–validation ratio. In total, there were 59 images
used, and training had between 43 and 45 images for each split
(Table A.6). Lastly, for our test set, we use two images from rhizobox
40 at days 2022-08-15 and 2022-08-24 that are drought-level (‘dry’)
and rewatered (‘wet’), respectively.

5.2. Spectral characteristics of viewing pane

At each stage of data acquisition, the Lexan™ viewing pane is not
removed, so another factor to investigate when considering hyperspec-
tral features is the plastic sheet’s effect on the spectral signatures. Using
a rhizobox of the same make as above and only filled with Turface
soil, we imaged the box in dry and rewatered scenarios with the clear
plastic sheet in place and removed. Summary statistics across the entire
image are shown in Fig. 5. We see that the clear plastic sheet absorbs
or prevents a proportional amount of reflectance for both scenarios of
dry and wet soil. While the signatures’ magnitudes change, the shape
5

of the signatures hardly change when the sheet is removed, and this
change becomes almost imperceptible when the soil is wet. To further
quantify this statement, we use the spectral angle difference

𝜃(𝐱, 𝐲) = cos−1
(

𝐱𝑇 𝐲
‖𝐱‖2‖𝐲‖2

)

to compare mean spectral signatures of the images with and without
Lexan. They are respectively represented by 𝐱 and 𝐲. For dry and wet
boxes, the spectral angles were found to be 0.0497 rad (2.8477◦) and
0.0220 rad (1.2628◦), resp. The result shows that both mean spectral
signatures are similar vectors and separated in value only by scaling
differences. The sheet is therefore left in place when acquiring data at
each stage of the aforementioned timeline (Section 3).

5.3. Model architectures

Once the data is divided into five splits (Table A.6), each split is
input to three different UNET models. The models use either conven-
tional RGB image analyses, only HS signatures, or conventional image
analyses coupled with HS signatures.

First, the ‘‘spatial’’ method does conventional image analysis using
RGB images. A UNET model of depth 5 is used with BatchNorm (Ioffe
and Szegedy, 2015) in the double convolution feedforward stages. The
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Fig. 5. Comparison of summarized spectral reflectances for a rhizobox filled with (a) dry and (b) wet Turface soil when the Lexan™ is in place or removed. Regarding summary
reflectance statistics, the solid lines, dashed lines, and shading between the lines represent means, medians, and standard deviations, resp. (a) For the dry soil, the plastic sheet
absorbs or prevents a proportional amount of reflectance. (b) For the wet soil, the difference in reflectance drops by a factor of approximately 20. Both scenarios demonstrate a
spectral signature that remains the same regardless of whether the plastic sheet is attached.
filter sizes and number of feature maps per each encoding depth is the
same as the original work (Ronneberger et al., 2015) but with paddings
of 1 on either side. To train from randomly initialized weights, we use
the Adam optimizer (Kingma and Ba, 2014) with default parameters
(0.99, 0.999, 0.001) and no weight decay. Models are trained for a
maximum of 1000 epochs with early stopping after 250 epochs of no
binary cross-entropy loss improvement. Only weights demonstrating
better validation DICE (threshold 0.5) are saved for evaluation.

Second, the ‘‘spectral’’ method uses only HS signatures. A UNET-
like architecture (named SpectralUNET) is trained on pixels’ spectral
signatures that have D bands. To achieve a comparably-sized network,
SpectralUNET’s encoder has layers of size 1650, and its decoder has
layers of size 1650 that use concatenated information using skip con-
nections from the encoder layers as inputs. Its final output layer is
a single neuron that outputs the model’s confidence that a pixel is
root. Each layer input and hidden layer is a sequence of a linear layer,
ReLU nonlinearity, and BatchNorm layer. A figure of the architecture is
provided in Fig. 6. The same optimizer and number of training epochs
remain the same as in the spatial method.
6

Third, combining conventional image analysis with HS signatures
to create a ‘‘spatial–spectral’’ method, we use a UNET whose first set of
layers is instead a 3D convolutional layer that uses a filter of size D×3×3
(CubeNET) and goes to 64 channels as in the spatial method. Following
this first convolution, the order and size for the rest of the convolutional
layers is the same as the spatial method. We use the same Adam
optimizer configuration as the spatial method with default parameters
and 1000 epochs of training with early stopping of 250 based on the
validation BCE loss. Compared to keeping all 𝐷 channels, we chose
to learn weights to 64 channels to keep the model size (ie. degrees
of freedom) comparable between CubeNET, UNET, and SpectralUNET.
Thus, any performance increases are less (if at all) attributed to an
increase in the number of trainable model parameters.

To minimize model overfitting due to the small dataset, we saved
model parameter checkpoints at each epoch when a model improved
upon its validation BCE loss. These parameter checkpoints are reloaded
to get results and segmentation predictions in subsequent sections.
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Fig. 6. SpectralUNET architecture. The numbers represent the dimensionality of a layer’s output. Blocks in green represent concatenated information from previous feedforward
layers.
Fig. 7. Reflectance comparison between root and soil spectral signatures across 15 peanut rhizoboxes. Shading in the respective colors represents a single standard deviation from
the solid lines. Fisher’s linear discriminant score is computed at each band. The means and deviations were computed after smoothing each signature with a moving average of
size 3.
6. Segmentation results

Here, we discuss low and high HS band choices, segmentation
performance, limitations for the data and learning models, and future
work.

6.1. HSI data preprocessing

Prior to using the spectral or spatial–spectral methods, we must con-
sider what region of the spectral signature to use as input. Therefore,
we consider the mean and standard deviation for 33% of the root and
soil pixels from 15 peanut rhizoboxes. From Jun 24th to Aug 8th, the
spectral signatures are compared as in Figs. 7 and 8. Fig. 7 shows that
root pixels have signatures with higher average reflectance but also
greater variance than soil. Also, Fig. 8 shows that the distribution of
both signatures have skewed statistics with longer tails toward higher
reflectance. We use the FDS to measure the separability of the root and
soil distributions. Scores are computed for the reflectance means and
standard deviations for root and soil pixels at each given wavelength
across all 15 boxes. As shown in Fig. 7, the discriminant score for
7

the two classes increases significantly by 450 nm and drops sharply
after 925 nm. With this in mind, we choose to train and evaluate
the spectral/spatial–spectral methods with spectral information from
450–926 nm (approximately cube index 25 to 263, exclusive) of each
HSI cube. Therefore, the input for the SpectralUNET and CubeNET are
588, 544 × 238 and 238 × 608 × 968, respectively.

6.2. Model comparisons – validation data

Final training loss, number of trainable weights, and quantitative
validation results for UNET, SpectralUNET, and CubeNET are shown
in Tables 3 and 4, respectively. To produce Table 4, the thresholds per
each model are chosen according to their best validation DICE score on
each split. In this way, we are comparing the models’ ‘‘best’’ expected
performance when used for annotating unseen data (ie. test data).
UNET continues to perform well when focusing on spatial information
in the visible RGB channels. Due to inherent noise in the spectral
reflectance (Figs. 7 and 8), SpectralUNET performs the worst. Across
all five splits, the CubeNET has better performance and adds a little
under one second of per-image CPU inference time (Table 3). We also
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Fig. 8. Reflectance comparisons between root and soil spectral signatures across 15 peanut rhizoboxes. Both root and soil plots show their distributions are skewed toward a
higher reflectance compared to their means.
Table 3
Number of trainable weights, CPU-based inference time, and 5-split validation binary
cross-entropy loss for UNET, SpectralUNET, and CubeNET. Lower BCE Loss is better.

Val BCE loss # Weights Per-image time (s)

UNET 0.080 ± 0.015 31,043,521 4.633 ± 0.065
SpectralUNET 0.146 ± 0.022 30,388,051 292.815 ± 0.291
CubeNET 0.077 ± 0.014 31,178,881 5.425 ± 0.224

note that including spectral information with spatial methods decreases
the variation in DICE results for CubeNET compared to the other two.

Fig. 9 compares the precision–recall curves between methods and
shows that CubeNET handles the precision–recall tradeoff better than
the other methods and may perform the best on unseen examples.
UNET has slightly more variance in its performance but performs well,
and SpectralUNET shows the most variance and the worst performance.
Combining UNET’s spatial filters with the high spectral variance seen in
Fig. 8 led to more consistent and generalizable results. Similar conclu-
sions appear to be found in Fig. 10; the main difference between UNET
and CubeNET is in the improvement of TP’s mean and consistency
(distribution tightness).

When comparing segmentation masks as seen in Fig. 11, CubeNET
segments roots in dry images and thin roots more consistently than
UNET, but sometimes the peanut pegs are not fully identified along
with the root class (see second row of Fig. 11). Overall, SpectralUNET
typically has more FP noise than the other two, especially when the
soil’s visible spectrum is like roots. However, all three tend to show
some overstepping of root boundaries and could benefit from post-
processing to clean up results. Additional selected segmentation results
for all three models may be seen in Appendix B (Figs. B.16, B.17, B.18).

From the results, we may conclude that deep learning models at-
tempting to segment roots from soil must utilize spatial information. We
may also conclude that – although subpar alone – spectral signatures
combined with spatial information can cause models to learn a better,
more generalized understanding of target objects when solving the
problem of semantic segmentation.
8

Table 4
Quantitative validation results for UNET, SpectralUNET, and CubeNET. Best results
across all models are in bold. Higher DICE, +IOU, and AP scores are better.

Split UNET SpectralUNET CubeNET

DICE +IOU AP DICE +IOU AP DICE +IOU AP

1 0.830 0.709 0.915 0.663 0.496 0.719 0.841 0.725 0.923
2 0.825 0.702 0.909 0.720 0.563 0.793 0.831 0.711 0.915
3 0.864 0.761 0.942 0.767 0.622 0.829 0.868 0.766 0.946
4 0.843 0.729 0.922 0.764 0.618 0.832 0.843 0.729 0.918
5 0.827 0.705 0.906 0.673 0.507 0.731 0.837 0.720 0.914

Mean 0.838 0.721 0.919 0.717 0.561 0.781 0.844 0.730 0.923
SD 0.015 0.022 0.013 0.044 0.053 0.048 0.013 0.019 0.012

6.3. Model comparisons – test data

Using the unseen dry and wet box data for rhizobox 40, we do a final
comparison of the three models. To construct the results seen in Table 5
and Figs. 12 and 13, we used the saved models and cross-validated
thresholds from training on all five splits.

Table 5 shows the mean and standard deviation of metrics for all
three models, and Fig. 12 shows the spread of the confusion matrix
results for the dry and wet images. Overall, the summarized results
show that CubeNET outperforms UNET and SpectralUNET on test data.
The difference in performance is even greater when considering seg-
mentation results on a dry image; CubeNET is shown to undersegment
the roots while the other two oversegment and have two or three
times more false positives (see also Fig. 13). We may find a suggested
reason for this when comparing UNET and SpectralUNET. On the dry
image, SpectralUNET outperforms UNET on average across all metrics.
This suggests that CubeNET’s performance boost primarily comes from
incorporating hyperspectral information. This further suggests that fu-
ture studies which look at in situ roots under drought-level conditions
should also use HSI data to differentiate roots and soil.

6.4. Limitations

Although sufficient for semantic segmentation purposes, the fully-
annotated dataset has certain limitations to consider. First, the full
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Fig. 9. Precision–Recall curves for UNET, SpectralUNET, and CubeNET on the five splits of data. Across multiple confidence thresholds, CubeNET demonstrates slightly more
robustness.
Table 5
Quantitative test results for UNET, SpectralUNET, and CubeNET. Best results across all
models are in bold. Higher is better for all metrics.

Model Dry Wet Both

UNET

Acc 0.482 ± 0.245 𝟎.𝟗𝟖𝟑 ± 𝟎.𝟎𝟎𝟏 0.733 ± 0.123
DICE 0.073 ± 0.025 𝟎.𝟕𝟓𝟕 ± 𝟎.𝟎𝟏𝟎 0.162 ± 0.053
+IOU 0.038 ± 0.014 𝟎.𝟔𝟎𝟗 ± 𝟎.𝟎𝟏𝟑 0.089 ± 0.031
AP 0.138 ± 0.049 0.836 ± 0.007 0.226 ± 0.079

SpectralUNET

Acc 0.525 ± 0.227 0.976 ± 0.003 0.751 ± 0.114
DICE 0.084 ± 0.037 0.653 ± 0.016 0.161 ± 0.064
+IOU 0.044 ± 0.020 0.485 ± 0.017 0.089 ± 0.039
AP 0.201 ± 0.082 0.697 ± 0.011 0.220 ± 0.083

CubeNET

Acc 𝟎.𝟖𝟏𝟓 ± 𝟎.𝟐𝟔𝟖 0.981 ± 0.002 𝟎.𝟖𝟗𝟖 ± 𝟎.𝟏𝟑𝟒
DICE 𝟎.𝟐𝟕𝟑 ± 𝟎.𝟏𝟒𝟓 0.751 ± 0.010 𝟎.𝟒𝟕𝟏 ± 𝟎.𝟐𝟎𝟔
+IOU 𝟎.𝟏𝟔𝟔 ± 𝟎.𝟎𝟗𝟕 0.601 ± 0.013 𝟎.𝟑𝟐𝟗 ± 𝟎.𝟏𝟔𝟑
AP 𝟎.𝟑𝟒𝟓 ± 𝟎.𝟎𝟕𝟗 𝟎.𝟖𝟒𝟑 ± 𝟎.𝟎𝟎𝟗 𝟎.𝟔𝟏𝟎 ± 𝟎.𝟏𝟎𝟗

set of annotations was completed by multiple co-authors. By way of
demonstration, Fig. 14 shows examples of overlapped ground truth
masks for four selected images from the two highest contributing
annotators. Both annotators agree on most of the root pixels. However,
both annotators add thin roots or root edges they believe are in the
image that the other does not. Quantitatively, we may compare the
discrepancy in annotation through the sum of a logical XOR image
normalized by the sum of the logical OR image. When we consider the
four images in Fig. 14, from left to right, top to bottom, the fraction of
discrepancy is 0.344, 0.219, 0.270, and 0.397 for an average of 0.308.
A couple of the images were annotated with the VIA tool, leading to
thicker annotations. Both annotators later used Photoshop or GIMP and
drew thinner roots in later masks.

Second, the root and soil objects often became indistinguishable
depending on the box water conditions. Dry soil often had the same
RGB colors as living peanut roots, and wet soil often had the same RGB
9

colors as dead peanut roots. In certain instances, dry/wet soil may be
differentiated from living/dead roots through certain HSI bands. Addi-
tionally, some root annotations may be missing because the annotators
may believe a thin object to be a scratch on the box instead of a new,
thin root growing in the soil. Although we could use models trained on
other datasets or previously annotated HyperPRI data, the pretrained
model and methods like RootGraph (Cai et al., 2015) would require
manual checks of the masks. The segmentation checks take as much
time as manual annotations from a blank mask. Alternative tools, such
as RootPainter (Smith et al., 2022), may help with annotations but
would likely require the finetuning of multiple models due to the high
variability we see in our dataset’s soil conditions. The third limitation
of the dataset is that the camera hardware tended to have increased
noise toward the longer wavelengths, and approximately the last 35
bands (70 nm) most likely could not be used due to the excessive
noise. As previously illustrated, Fig. 7 shows that the discriminant
score decreased with increases in the signature variances. Lastly, some
unexpected data features such as mold and algae appear in later peanut
images and were at times difficult to distinguish from roots.

Regarding the segmentation methods, CubeNET demonstrates clear
but minimal improvements compared to UNET. Compared to the Spec-
tralUNET mapping the initial 238-dimension spectral signatures to 256
dimensions, the spatial–spectral method maps it to 64 dimensions and
perhaps causes the model to lose valuable spectral information. Another
potential explanation for the limited improvement may be that the
band selection method may not be optimal and other metrics should
be considered when trying to differentiate root from soil. Finally, the
small dataset bounds all three segmentation methods’ performance - a
typical issue for deep learning models.

6.5. Future work

The primary path of future work lies in acquiring and publicly
releasing additional HSI plant root datasets that detail different species,
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Fig. 10. Validation confusion matrix results for UNET, SpectralUNET, and CubeNET across the five splits of data. Utilizing both hyperspectral and spatial features, CubeNET
achieves improved precision and greater consistency in predicting roots.
soil types, soil salinities (Shelden and Munns, 2023), and soil depths,
and by simultaneously gathering other non-destructive imaging
datasets (ie. X-ray CTs, MRIs), researchers can improve validation of
any HSI-based algorithms and data analytics.

Briefly, additional HSI plant root datasets could allow researchers to
take advantage of pretraining methods to improve segmentation perfor-
mance. It is also possible to use the PRMI dataset for pretraining (Xu
et al., 2022, 2020), though some preprocessing or training modifica-
tions will likely be needed to make PRMI training like HyperPRI’s
RGB data. Another way of improving segmentation performance is with
data augmentation. Although well-used for RGB data, it is not always
clear what the best approach is for augmenting HSI data. Thus, proper
spectral augmentation could help us gain improvements analogous to
what occurs when RGB data is properly augmented.

Regarding model-based improvements, larger segmentation archi-
tectures (eg. DeepLabv3+ Chen et al., 2018) and recently proposed
graph-based methods (Liao, 2023) may be explored, but we expect
similar conclusions regarding the benefit to segmentation performance
afforded by utilizing hyperspectral features in tandem with spatial
information. It may also be possible to direct a model’s ‘‘attention’’
toward improving uncertain pixel predictions by adding modules that
make the model aware of uncertainty in its encoded features (Li et al.,
2024). When used for root segmentation, uncertainty-awareness may
decrease noisiness on the root borders or on spectral signatures that are
within the overlapping distributions seen in Fig. 7. Another proposed
path of future work is in the use of texture-based methods to exploit
the observation that sections of soil are highly textured, while sections
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of roots are not as textured and are mostly flat. Conventional convo-
lutional methods are prone to missing small, local statistical changes
that are typical of texture. Modifying the models to take advantage of
these statistical features can help improve their performance. Finally,
we conjecture that because the use of hyperspectral features increased
the precision of the deep learning segmentation model, researchers may
also expect improvement to proposed root repair algorithms (Lu et al.,
2019; Mingxuan et al., 2022) and can investigate this utilizing data
publicly released through this article.

7. Conclusions

We proposed a fully-annotated HSI rhizobox dataset for the peanut
and sweet corn annual plants. It provides data that enables researchers
to model HS root traits across time and to create learning models
meant to target thin, fragmented object features. We detailed the data
acquisition methodology, discussed some potential applications, and
investigated the use of spatial, spectral, and spatial–spectral methods
in a binary segmentation application. Of these three baseline models,
the spatial–spectral model demonstrates better overall performance and
shows the benefit of using the proposed dataset to add HS features
to the spatial model’s input. We briefly described future paths for
improving the segmentation performance and recommended possible
augmentations for training with the data and with different model

variations.
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Fig. 11. Selected segmentation results for UNET, SpectralUNET, and CubeNET. Each row corresponds to one split of data (ie. the second row takes segmentations from split 2).
Darkened image pixels are true negatives. Red pixels are false positives. Blue pixels are false negatives. Yellow-green pixels are true positives.
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Appendix A. Additional HSI phenotype comparisons and data
splits

See Table A.6 and Fig. A.15.
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Fig. 12. Test confusion matrix results for UNET, SpectralUNET, and CubeNET. Using both hyperspectral and spatial features, CubeNET undersegments while both UNET and
SpectralUNET tend to oversegment.
Fig. 13. Test segmentation results for UNET, SpectralUNET, and CubeNET. The rows correspond to dry and wet box images, resp. Darkened image pixels are true negatives. Red
pixels are false positives. Blue pixels are false negatives. Yellow-green pixels are true positives.
Appendix B. Selected segmentation results

In the following figures, selected segmentation results are cho-
sen for comparison between UNET, SpectralUNET, and CubeNET. As
of the writing and analysis presented in this paper, the image for
12
20220806_box53 was mislabeled, so all models missed the same
peanut peg in their own ways. As mentioned before in Fig. 11, darkened
image pixels are true negatives. Red pixels are false positives. Blue
pixels are false negatives. Yellow-green pixels are true positives.
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Fig. 14. Selected dataset annotation comparisons for two annotators’ ground truth masks. Darkened and green pixels represent consistent annotations between Person 1 and 2,
while red and blue show differing true positive annotations for Person 1 and 2, respectively.
Table A.6
Split counts for each day in each peanut dataset split. Legend is (#train/#val).
Date Split 1 Split 2 Split 3 Split 4 Split 5

Jun-24 13/5 16/2 10/8 16/2 14/4
Jul-1 8/3 10/1 6/5 9/2 9/2
Jul-8 3/1 3/1 4/0 2/2 2/2
Jul-14 4/1 4/1 4/1 3/2 3/2
Jul-21 2/1 2/1 3/0 2/1 1/2
Jul-27 3/1 3/1 4/0 2/2 2/2
Aug-6 3/1 3/1 4/0 2/2 2/2
Aug-8 2/0 1/1 2/0 1/1 2/0
Aug-10 2/0 1/1 2/0 1/1 2/0
Aug-12 1/0 0/1 1/0 1/0 1/0
Aug-15 1/0 0/1 1/0 1/0 1/0
Aug-19 1/0 0/1 1/0 1/0 1/0
Aug-21 1/0 0/1 1/0 1/0 1/0
Aug-24 1/0 0/1 1/0 1/0 1/0

Total 45/14 44/15 45/14 44/15 43/16
13
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Fig. A.15. Additional comparison of data spectra and edges for peanut phenotypes 1 and 2. (a) and (b) show the FDS between soil and root, respectively, are around 10x less
than the FDS of soil versus root pixels (see Fig. 7).
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Fig. B.16. Selected segmentation results for UNET. Each row corresponds to one split of data (ie. the second row takes segmentations from split 2).
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Fig. B.17. Selected segmentation results for SpectralUNET. Each row corresponds to one split of data (ie. the second row takes segmentations from split 2).
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Fig. B.18. Selected segmentation results for CubeNET. Each row corresponds to one split of data (ie. the second row takes segmentations from split 2).
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