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Abstract

Predicting soil water status remotely is appealing due to its low cost and large‐scale

application. During drought, plants can disconnect from the soil, causing

disequilibrium between soil and plant water potentials at pre‐dawn. The impact of

this disequilibrium on plant drought response and recovery is not well understood,

potentially complicating soil water status predictions from plant spectral reflectance.

This study aimed to quantify drought‐induced disequilibrium, evaluate plant

responses and recovery, and determine the potential for predicting soil water

status from plant spectral reflectance. Two species were tested: sweet corn

(Zea mays), which disconnected from the soil during intense drought, and peanut

(Arachis hypogaea), which did not. Sweet corn's hydraulic disconnection led to an

extended ‘hydrated’ phase, but its recovery was slower than peanut's, which

remained connected to the soil even at lower water potentials (−5 MPa). Leaf

hyperspectral reflectance successfully predicted the soil water status of peanut

consistently, but only until disequilibrium occurred in sweet corn. Our results reveal

different hydraulic strategies for plants coping with extreme drought and provide

the first example of using spectral reflectance to quantify rhizosphere water status,

emphasizing the need for species‐specific considerations in soil water status

predictions from canopy reflectance.
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1 | INTRODUCTION

Drought poses a substantial and escalating threat to global crop

production and survival (Dwivedi et al., 2018). Climate change‐induced

droughts and heatwaves have the potential to intensify one another

(Mickelbart et al., 2015), leading to more frequent and severe droughts

(Alizadeh et al., 2020; Legg, 2021), and to escalating risk of their especially

dangerous combination, so‐called ‘hotter‐drought’ (Hammondet al., 2022).

Edaphic drought (i.e., soil‐related), in particular, will significantly threaten

the productivity of dryland areas covering approximately 41% of the

Earth's land surface, which provides food security for over 38% of the

global population (Reynolds et al., 2007). While various studies have

detailed the physiological responses of aboveground plant organs to

edaphic drought (Fàbregas & Fernie, 2019; Gupta et al., 2020), and

although scientists succeed in assessing soil water status during edaphic

droughts (Whalley et al., 2013; Ma et al., 2019), monitoring water status

at the root–soil interface remains challenging. Notably, plants can become

disconnected from the drying soil (Duddek et al., 2022), resulting in a pre‐

dawn disequilibrium in water potentials between soil and plant. Thus, to

better understand the incoming droughts on plant growth and survival,

we need a comprehensive understanding of plant drought responses and

recovery, along with high‐throughput methods to assess plant water

status, particularly focusing on the root–soil interface.

Edaphic droughts directly affect the soil–plant–atmosphere

continuum upon which plant productivity and growth depend.

The soil–plant–atmosphere continuum allows water movement from

the soil through the plant vascular system to the atmosphere

following a declining water potential gradient (Elfving et al., 1972).

During drought, plants close stomata to reduce water loss, decreasing

transpiration and photosynthesis (Martin‐StPaul et al., 2017;

Scoffoni & Sack, 2017). As drought intensifies, increased tension

can induce emboli formation in xylem conduits. Embolism of distal

organs (e.g., leaves, fine roots) may cause hydraulic segmentation and

act as a ‘hydraulic fuse’, to limit the tension and embolism formation

in the xylem of proximal organs (Cuneo et al., 2016; Michaletz, 2018;

Wolfe et al., 2016). The embolized xylem impedes water transport

and ultimately leads to distal organ death (McDowell et al., 2022) but

reduces the risk of death in more proximal organs from which plants

can often resprout (e.g., main stem, coarse roots). Pre‐dawn leaf

water potential (Ψpd) is widely used as a proxy of soil water potential

(Ψsoil) as the water potentials of leaves and soil are assumed to

equilibrate overnight in the absence of transpiration (Li et al., 2019;

Samuelson et al., 2014). However, despite this broad assumption

about plant–soil equilibrium before daily transpiration, pre‐dawn

disequilibrium has been documented to occur in various plant species

(Donovan et al., 1999, 2001, 2003; Groenveld et al., 2023; Scholz

et al., 2007). This disequilibrium has been attributed to factors such

as night‐time transpiration, accumulation of apoplastic solutes in

leaves, and a failure to restore tissue capacitance during the night

(Bucci et al., 2004; Cavender‐Bares et al., 2007). Disequilibrium can

also occur when soil undergoes drying, with the initial response being

root hair shrinkage, progressing to the formation of cortical lacunae,

fine root mortality and subsequent coarse root shrinkage

(Cuneo et al., 2016; Duddek et al., 2022). Additionally, root exudates

such as mucilage may enhance water retention in the rhizosphere

compared to the surrounding soil during drying (Carminati, 2012). These

mechanisms might serve to prevent plant exposure to potentially lethal

soil water potentials. Because plant and soil water potential at pre‐dawn

can become decoupled, Ψpd can mechanistically serve as the parameter

to assess the degree of decoupling during drought. Such decoupling

should increase over the course of a severe drought and may dictate

recovery rates. However, pre‐dawn disequilibrium studies have been

primarily conducted under well‐watered or mild drought conditions

(Donovan et al., 1999, 2001; Groenveld et al., 2023). A comprehensive

evaluation of plants transitioning from well‐watered conditions to

severe drought could provide a more thorough understanding of the

connection between plant and soil water status and reveal when

disequilibrium occurs, and why.

Direct measurements of plant water status have predominantly

focused on above‐ground tissues, while monitoring root water status

has been limited due to the difficulty in accessing roots (Chang

et al., 2023). Commonly used leaf water status metrics include leaf

equivalent water thickness (EWT), relative water content (RWC), and

leaf water potential (Ψleaf). The EWT, calculated as the absolute water

content per leaf area unit, serves as an indicator of overall plant

drought conditions (Xu et al., 2020). The RWC reflects the overall plant

water balance and indicates leaf cell volume shrinkage (Martinez‐

Vilalta et al., 2019; Sack et al., 2018). The Ψleaf represents the driving

force of water movement and is used to document critical physiologi-

cal states, including the point of stomatal closure, bulk turgor loss, and

hydraulic failure (Bartlett et al., 2012; Hammond et al., 2019;

Rodriguez‐Dominguez et al., 2022). Water potential and RWC could

also be used to assess root water status. However, traditional

measurements of plant RWC or water potential require either

extensive tissue excision or the use of a pressure chamber or

psychrometers, limiting their application to small‐scale or low‐

throughput assessments. The advancement of real‐time spectral

prediction techniques enables the continuous and noninvasive assess-

ment of leaf water status, such as leaf EWT (Féret et al., 2019), leaf

RWC (Ihuoma & Madramootoo, 2019) and the turgor loss point

(Castillo‐Argaez et al., 2024). However, recent root imaging technol-

ogies, such as digging out and imaging (Le Bot et al., 2010; Shen

et al., 2020), magnetic resonance imaging (Haber‐Pohlmeier et al., 2019;

Pflugfelder et al., 2017), minirhizotron (MR) systems (Gloaguen

et al., 2019; Zurweller et al., 2018) and rhizoboxes (Gloaguen

et al., 2022; Song et al., 2021), have primarily focused on root

phenology and structure, including rooting depth, root length, root

surface area and root volume. Among the various options, for field

studies of root water status, the MR system would be ideal if

appropriate spectral reflectance sensing technology could be devel-

oped. However, no existing study has identified wavelengths impor-

tant for predicting soil and root water status, which are critical for

developing a multi‐ or hyperpectral MR system. A standard MR system

consists of an imaging station and an RGB camera equipped with an

LED light, which moves within a transparent tube inserted under-

ground, enabling continuous and noninvasive monitoring of roots.

2 | SONG ET AL.
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With the appropriate lighting and identification of the critically

important wavelengths to predict root and soil water status, this

system could enable functional insights on the soil–root interface

during edaphic droughts, similar to recent advances made in the

spectral ecophysiology of leaves (Castillo‐Argaez et al., 2024).

One critical challenge for assessing pre‐dawn disequilibrium is the

difficulty in directly sensing the water status of roots and soil, especially at

the plant–soil interface. Plant spectroscopy could potentially be used to

predict plant and rhizosphere water status in high‐frequency and

nondestructively due to its success in sensing many traits and states of

plants and soil. For example, hyperspectral reflectance can predict plant

stress, health, and chemistry, including foliar nutrients (Grieco et al., 2022),

pigment composition (Blackburn et al., 2007) and vegetation water

content (Hanavan et al., 2015), as well as soil organic carbon (Bangelesa

et al., 2020), soil water content (Babaeian et al., 2015) and soil nutrients

(Guo et al., 2021). Reflectance has been used to monitor leaf and canopy

water status using spectral indices that use a few specific wavelengths

(Sapes et al., 2024). However, the belowground organs remain

unexplored when sensing plant–soil water relations. While some studies

have used the whole visible (VIS) to shortwave infrared (SWIR) range

(hyperspectral reflectance) to phenotype root morphology and structure

(Bodner et al., 2018; Narisetti et al., 2021), predicting root water status

remains a serious challenge. Using hyperspectral reflectance imaging

during plant dehydration and rehydration could provide a more

comprehensive understanding of water status, considering that both

water content and water potential could potentially serve as reliable

indicators of plant water status (Xu et al., 2020) and that hyperspectral

reflectance imaging provides spatially explicit information.

Here, we investigate the response and recovery of Arachis

hypogaea L. (peanut) and Zea mays (sweetcorn) during an experiment

of extreme drought and recovery while they are growing in

rhizoboxes accessible for hyperspectral imaging above‐ and below‐

ground. Peanuts and sweetcorn were chosen to represent C3 and C4

species and varying leaf phenology. We develop spectral models for

leaf, root and soil water status capable of predicting water potential

disequilibrium and identified crucial spectral signals associated with

plant and soil water status. We designed our study to test the

following three hypotheses:

1. Severe drought conditions will lead to pre‐dawn water potential

disequilibrium between plant and soil water status.

2. Spectral reflectance can accurately predict the water status of

plant organs and soil.

3. Leaf spectral reflectance will be a good predictor of soil water

status until disequilibrium occurs.

2 | MATERIALS AND METHODS

2.1 | Rhizobox construction

Plants were planted as seeds and cultivated in rhizoboxes (L ×W ×D:

34.5 × 21 × 3.8 cm). The choice of rhizobox dimensions was restricted

to the hyperspectral camera's focal depth, and the available space in

the dark imaging booth. Although this relatively small volume could

impact plant root development, the dimensions of all rhizoboxes

were rigorously controlled to ensure uniform effects across all plants.

The rhizobox was made of black lightproof plastic on the bottom and

three sides of the body. The fourth side was made of a transparent

polycarbonate resin sheet (Lexan®, L ×W: 35.5 × 21.5 cm) to visualize

root growth and development. Foam weatherstripping was placed

between the plastic edge and Lexan sheet and the plastic boxes. In

addition, all edges and screws used for constructing the rhizobox

were sealed with black opaque liquid electrical tape as a sealant to

prevent water leaks. Three drainage holes were made on the bottom

of the rhizobox to allow water drainage, and a piece of 400 mesh

(37 µm) screen placed inside the box covered these holes to prevent

soil loss during irrigation. The top of each rhizobox was covered using

transparent plastic cling wrap to reduce water loss from evaporation;

drain holes at the bottom of the boxes were left uncovered to

prevent inundation during watering. The growing medium for this

experiment was a fritted calcined clay, Profile Porous Ceramic

(Greens Grade™; Turface Athletics), hereafter referred to as ‘soil’. We

filled each rhizobox with approximately 1500 g of soil and over-

irrigated, drip‐dried and weighed them multiple times to ensure the

soil in each box reached its saturation point. The weights of dry soil

and saturated soil were recorded.

2.2 | Experiment design and treatment

Experiments were carried out using two plant species, peanut (Arachis

hypogaea L.) and sweet corn (Zea mays L.). Two sweet corn lines, IL4H/

S213531 and IL395a/S213532, and peanut genotype TUFRunner™

‘511’ (Tillman & Gorbet, 2017) and line 10 × 34‐4‐4‐1‐2, were grown in

64 rhizoboxes, with 16 boxes per genotype. One seed per box for

sweet corn and peanut was sown on 19 and 26 May 2022,

respectively. During the experiment, each rhizobox was kept in an

opaque white bubble‐padded envelope (lightproof) to minimize

physical scratches on the Lexan sheet and reduce the effects of light

interference and temperature fluctuation on root growth. Groups of

10 rhizoboxes were arranged in containers and placed on a green-

house bench. Each container was placed on a wooden table easel

inclined at a 30° angle, with the transparent side of all the rhizoboxes

facing down. This ensured that roots would grow against the

transparent sheet following gravitropism (Gloaguen et al., 2022).

Temperatures ranged between 16°C and 33°C and relative humidity

ranged between 70% and 85% based on greenhouse environmental

control settings. Light reaches ∼1200Umolm−2 s−1 of photosynthetic

photon flux density (PPFD) during full sun exposure. Once the seedling

emerged, a small hole was made in the plastic cling wrap at the top of

the rhizobox to allow the upward growth of the shoot unimpeded.

After emergence, we top‐dressed each rhizobox with one scoopful

controlled‐release fertilizer ‘osmocote’ (Osmocote, 15:9:12 N–P–K;

The Scotts Company), so that the fertilizer would not be in the soil but

able to leach nutrients during watering. Additionally, 1 L of water

HYPERSPECTRAL SIGNALS IN THE SOIL | 3
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(Supporting Information S1: Figure 1, approximately 1 L water

saturated the soil in each box) was added to each box daily until 41

days after planting (DAP) for sweet corn and 78 DAP for peanut,

respectively (Figure 1). After which, we stopped the irrigation for 11

rhizoboxes per genotype to initiate dehydration and the other five

rhizoboxes served as reference for well‐watered plants (Figure 1).

During dehydration, 1‐2 rhizobox were sampled for destructive

measurements of plant leaf, stem, root and soil when the Ψpd reached

0 to −0.5 (Ψ1), −0.5 to −1.0 (Ψ2), −1.0 to −1.5 (Ψ3), −1.5 to −2.0 (Ψ4)

and −2.0 to −3.0 (Ψ5)MPa for sweet corn and reached around 0 to

−1.0 (Ψ1), −1.0 to −2.0 (Ψ2), −2.0 to −3.0 (Ψ3), −3.0 to −4.0 (Ψ4) and <

−4.0 (Ψ5)MPa for peanut (Figure 1). The water supply (1 L per box

daily) resumed at 70 and 91 DAP until the end of the experiment (75

and 96 DAP) for sweet corn and peanut, respectively (Figure 1). The

other five drought‐treated rhizoboxes per crop species were used to

assess drought recovery after rehydration (Figure 1).

2.3 | Data collection

Plant physiological measurements were taken for the plants in each

rhizobox. All plants were carefully transported from the greenhouse

to the lab (where temperature was maintained at 22°C) at 4:30 AM to

ensure the plants were well dark‐adapted. We first measured the

chlorophyll fluorescence to assess plant health and function during

dehydration. Measurements were taken on a fully expanded peanut

leaf on (or close to) the second node from the apex or the newly

mature sweet corn leaf using an Imaging‐PAM (Walz). The maximum

potential quantum efficiency of Photosystem II (Fv/Fm) was obtained

by averaging the Fv/Fm values of the imaged leaf area. Following the

Fv/Fm measurements, we removed one mature and healthy leaf per

box to measure Ψpd with a Scholander pressure chamber (model

1505D‐EXP; PMS Instrument) by gradually increasing the pressure at

a rate of 0.01MPa s−1 until the meniscus of the xylem sap was VIS at

the cut surface (Bitterlich et al., 2018). After the water potential

measurement, we determined the RWC of the same leaf using the

following formula:

RWC =
freshweight − dryweight

saturatedweight − dryweight
× 100.

We weighed the fresh leaf and then measured the leaf area by

using a leaf area metre (Li‐Cor 3000; Li‐Cor BioSciences). To

obtain saturated weight, we submerged the leaf petiole in tap

water for 2 h (Zwieniecki et al., 2007) for corn and 16 h for

peanut, respectively, in the dark at 4°C to prevent oversaturation

artifacts resulting from low osmotic potential due to starch

conversion into sugars (Boyer et al., 2008). The rehydration time

for a peanut leaf was obtained from a full rehydration curve

(a)

(b)

F IGURE 1 Illustration of the experiment design, using peanut genotypeTUFRunner™ ‘511’ as an example. (a) The process of the experiment,
(hyper)spectral imaging and physiological measurements initiated on the first day of drought were applied until the end of the experiment.
(b) The treatments applied to boxes; boxes 1–5 received full irrigation and were destructed on the last day of the experiment, serving as the
controlled reference group. Intact boxes 6–10 experienced drought, and were destructively harvested for validation data on Day 2 and Day 7
after being rewatered. Boxes 11–16 experienced drought and were destructively harvested for validation data on the day when the soil water
potential reached specific values ranging from wettest to driest. [Color figure can be viewed at wileyonlinelibrary.com]

4 | SONG ET AL.
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(Supporting Information S1: Figure 2). After recording the

saturated weight, each leaf was oven‐dried at 70°C for at least

48 h, when mass became stable, to get the dry weight. Leaf EWT

was calculated as

EWT =
freshweight − dryweight

leafarea
.

One leaf of each plant was carefully wrapped in aluminium foil

and enclosed in a plastic zip‐lock bag the evening before measure-

ments. The leaf water potential of the bagged leaf was measured to

represent stem water potential (Ψstem, Tomasella et al., 2023). We

conducted leaf spectra measurements on a fully expanded mature

leaf using a spectroradiometer (HR‐1024 spectroradiometer; SVC

Corp.) with a wavelength range from 350 to 2500 and a spectral

resolution of 1 nm. We trimmed the wavelength range to 400‐2400

for model building to remove noisy bands at the edge of the sensor

range. Leaf gas exchange was measured on four drought‐treated and

three well‐watered plants per species from 8AM to 12 PM at each

sampling date. Net photosynthesis (Anet; μmol m−2 s−1), stomatal

conductance (gs; mol m−2 s−1) and transpiration (E; mmol m−2 s−1)

were measured on fully expanded mature leaves using an infrared gas

analyzer (Li‐Cor 6800; Li‐Cor BioSciences). Measurements were

conducted at a standardized PPFD of 1000 μmol m−2 s−1. This value

falls within the observed maximum PPFD range inside the green-

house, which typically reaches up to 1200 μmol m−2 s−1. Concur-

rently, the chamber maintained a reference CO2 of 415 μmol s−1 at a

temperature of 25°C. Leaf‐to‐air vapour pressure deficit (VPD) was

maintained at levels between 1.0 and 2.0 kPa. Each leaf was given

approximately 15min to equilibrate before measurements were

taken. The stability criteria (slope limit: 0.1 and standard deviation

limit: 0.1) of sample CO2 were also used to determine the timing of

data logging. Daily measurements were taken on one leaf from each

plant until drought‐induced stomatal closure (i.e., gs was reduced by

>90%) on the dehydrating plants. After rehydration, leaf gas

exchange was measured on five drought‐treated and three well‐

watered plants at each sampling date.

We imaged each rhizobox to get the hyperspectral reflectance of

roots in the soil. Each Rhizobox was imaged using a Hyperspectral

Imager (model 4200; HinaLea Imaging). This camera has a wavelength

range from 400 to 1000 nm with a spectral resolution of 2 nm. The

imaged area was 8 cm × 15 cm, with a camera working distance of

1m. The spectral reflectance of roots and soil was obtained through

segmentation by a pretrained, deep convolutional learning model

called ‘CubeNET’. The model was trained within the wavelength

range of 450–926 nm using a subset of approximately 45 peanut root

images from the HyperPRI data set (Chang et al., 2023). The

hyperspectral cubes were fed into the model, and for each, we

averaged the spectral signatures for pixels that were predicted as

root and as soil. To remove noisy bands at the limits of sensor

detection, we trimmed the wavelength range to 450–900 nm. Lastly,

we destructively harvested two rhizoboxes, immediately collecting

root samples and four soil samples per rhizobox from the

hyperspectral imaging area to determine soil and root water potential

(Ψsoil and Ψroot). Four soil samples per rhizobox were collected using

steel caps (METER Group Inc.) which were placed in a WP4C dew‐

point Potentiometer to measure Ψsoil (METER Group Inc.). We

measured Ψroot using a Scholander pressure chamber by carefully

excavating and excising an intact secondary root and inserting it into

the pressure chamber with the cut end facing upwards immediately

after dismantling the rhizobox. Subsequently, we gradually increased

the pressure at a rate of 0.01MPa s−1 until the meniscus of the xylem

sap became VIS at the cut surface (Bitterlich et al., 2018), the

balancing pressure at this point was multiplied by −1, and recorded

as Ψroot.

2.4 | Statistical analysis

Statistical analyses were performed in R (version 4.2.2; R Core Team,

2020). Because we did not observe significant genotypic differences

(p < 0.05) for both sweet corn and peanut, we deemed differences

among genotypes to be scientifically trivial and therefore chose to

pool data among genotypes within a species. Two‐way analysis of

variance (ANOVA) was used to test the significance of treatment

effects at p < 0.05 level, followed by a Tukey honest significant

difference post hoc analysis. For each species, we compared Fv/Fm,

Ψpd and leaf RWC and EWT between well‐watered and drought‐

treated plants among sampling days. We also assessed the differ-

ences among leaf, stem, root and soil pre‐dawn water potential

within each species on the driest day using one‐way ANOVA. Trait

values were presented as mean ± standard errors in the text.

Partial least square regression (PLSR, R package ‘pls’) was

performed to develop a predictive model of plant and soil water

status using spectral reflectance. The PLSR models were performed

on three data sets: the sweet corn data set (n = 183 for leaf and

n = 161 for root and soil), peanut data set (n = 154 for leaf and n = 134

for soil and root) and the combined data set (n = 337 for leaf and

n = 295 for soil and root) of sweetcorn and peanut. Before model

training, a representative 20% of the data was set aside using the

kennard‐stone algorithm (R package ‘prospectr’) which ensures even

sampling across the range and distribution of a target variable. The

80% left was used for training and testing. The training and testing

process used an iterative method with 100 iterations. Briefly, each

iteration randomly divided the training and testing data set into two

groups. The two groups were generated using a stratified octile

sampling where data within each octile of the distribution was

randomly allocated 80% into training and 20% into testing. This

method ensured even sampling across the whole distribution of

values within each iteration, which is important when data is not

evenly distributed across the whole range of values. Within each

iteration, the training subset was used to build a PLSR model. This

model was then validated against the testing group and its

performance was assessed based on root mean square error of

prediction in percentage (%RMSE), R2, slope and bias. The leaf

spectral reflectance ranging from 400 to 2400 nm at a resolution of

1 nm was first used to develop PLSR models to predict Ψpd, leaf RWC

HYPERSPECTRAL SIGNALS IN THE SOIL | 5
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and leaf EWT. To compare models and wavelength importance (using

‘varImp’ in R package ‘caret’) among leaf, root and soil, a second set of

PLSR models was built using leaf spectra reflectance trimmed to

450–900 nm with a spectra resolution of 2 nm to meet the settings of

the hyperspectral reflectance camera. The PLSR models based on

spectral reflectance ranging from 450 to 900 nm were performed to

predict leaf, root and soil water status. We have used Ψpd to

represent Ψroot and Ψsoil in this data set under the assumption that

hydraulic equilibrium happened among plant organs and soil. Data

sets of estimated Ψroot and Ψsoil (Ψpd estimated) and corresponding

spectral reflectance served as internal training and testing data sets.

Data sets consisted of measured Ψroot and Ψsoil from harvested

rhizoboxes and corresponding spectral reflectance served as indepen-

dent validation data sets. For each PLSR model, the number of

components was determined by choosing the number that resulted in

the smallest RMSE during training (Cohen et al., 2010). The 100

models resulting from the 100 iterations of training and testing were

applied to the validation data set to validate model performance on

data that was not involved in building the models. Models with high R2,

low %RMSE, low bias and a slope between measured and predicted

values close to 1 were considered higher‐performing models.

3 | RESULTS

3.1 | Physiological response during dehydration

At the beginning of dehydration (Day 0), all plants were well‐watered.

Both sweet corn and peanut leaves had high photosynthetic

potential, with unstressed peanut leaf Fv/Fm being slightly higher

than sweet corn (0.85 ± 0.003 vs. 0.78 ± 0.004, p < 0.05). Upon

drought initiation, peanut plant tissues dried faster than sweet corn,

as sweet corn reached 75% leaf RWC on Day 6 while peanut reached

75% leaf RWC on Day 4 (Figure 2c,f). As a result, sweet corn Ψpd

declined much slower than peanut Ψpd and most plants maintained a

Ψpd around −2.0MPa (Figure 2b). However, peanut Ψpd kept

declining during the entire drought period (11 days), and the average

Ψpd reached a minimum of −4.0MPa (Figure 2e). Both stressed sweet

corn (Day 15 and Day 23) and peanut (Day 7 and Day 11) plants

showed lower leaf Fv/Fm (absolute value 0.1 for sweet corn and 0.04

for peanut averaged across days) than well‐watered plants (p < 0.05,

Figure 2a,d), but sweet corn (Day 23) had a greater reduction in FvFm

(0.107 vs. 0.053) than peanut (p < 0.05, Day 11). After rehydration,

the Ψpd and leaf RWC of both sweet corn and peanut recovered, and

(a) (d)

(e)

(f)

(b)

(c)

F IGURE 2 Plant leaf chlorophyll fluorescence, water potential (Ψleaf) and relative water content (RWC) of sweet corn (a–c) and peanut (d–f)
during dehydration and rehydration. Dashed lines indicate plants that were subjected to drought and solid lines indicate plants that were
well‐watered, the yellow‐shaded area in each panel refers to days that drought treatment was applied to the rhizoboxes shown by dashed lines.
Regression lines in each panel are made using loess functions, and the 95% confidence interval is present as a shaded area around each
regression line. [Color figure can be viewed at wileyonlinelibrary.com]
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showed no differences compared with well‐watered leaves, at 2 days

after rewatering (p < 0.05, Figure 2b,c,e,f). However, sweet corn

Fv/Fm recovered slower than peanut, with peanut showing no

differences between rehydrated and control plants (0.85 ± 0.004 vs.

0.85 ± 0.002, p < 0.05, Figure 2d), while sweet corn showed lower

Fv/Fm in rehydrated plants than control plants (0.74 ± 0.01 vs.

0.78 ± 0.009, p < 0.05, Figure 2a).

During the drought, peanut plants consistently maintained an

Fv/Fm value greater than 0.75, while sweet corn experienced a steep

decline after reaching a Ψpd of −1.0MPa. Fv/Fm also reached a

minimum of ∼0.5 in sweet corn, near a hypothesized lethal limit of

Fv/Fm for photosystems (Guadagno et al., 2017, Figure 3a). Sweet

corn plants closed their stomata at Ψpd around −1.2MPa, while

peanut plants closed their stomata at Ψpd around −2.1MPa

(Figure 3c). The stomatal closure difference between sweet corn

and peanut also led to the different Anet and transpiration rates

between −1 and −2MPa of Ψpd. (p < 0.05, Figure 3b,d).

3.2 | Pre‐dawn disequilibrium

On the driest day of the drought ‐corresponding to Day 23 for sweet

corn and Day 11 for peanut plants— we observed a pre‐dawn

disequilibrium between plant and soil water potential (Supporting

Information S1: Figure 3, Figure 4). Sweet corn had Ψpd, Ψstem

and Ψroot at approximately −2.0MPa, but the Ψsoil was at

−2.86 ± 0.08MPa, significantly lower (p < 0.05) than all plant organs.

This disequilibrium was not seen in peanut, which still had

equilibrated water potentials even at Ψsoil = −4.0MPa.

3.3 | Leaf spectral reflectance (400–2400 nm)
models for leaf water status

Leaf spectral reflectance provided varying estimates of leaf water

status across organs and species (Table 1, Figure 5 and Supporting

(a) (b)

(c) (d)

F IGURE 3 Plant dark‐adapted chlorophyll fluorescence (Fv/Fm, a), net photosynthesis (Anet, b), stomatal conductance (gs, c) and transpiration
(E, d) of sweet corn (shown in red) and peanut (shown in blue) at different leaf water potentials. Regression lines in each panel are made using
loess functions, and the 95% confidence interval is present as a shaded area around each regression line. [Color figure can be viewed at
wileyonlinelibrary.com]
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Information S1: Figure 4). Our peanut‐based PLSR models

achieved predictions for Ψpd (R2 = 0.9, root mean square error of

prediction [RMSEP] = 5.69%), RWC (R2 = 0.77, RMSEP = 12.31%)

and EWT (R2 = 0.89, RMSEP = 9.09%). When applied to an

independent data set, these models delivered predictions for Ψpd

(R2 = 0.83, RMSEP = 12.91%), RWC (R2 = 0.61, RMSEP = 19.83%)

and EWT (R2 = 0.9, RMSEP = 9.37%) with intermediate to high

accuracy.

F IGURE 4 Water potentials of leaf, stem, root and soil of sweet corn (red boxplots) and peanut (blue boxplots) on the last day of drought
treatment (e.g., at their most dehydrated state), taken from the destructively harvested validation boxes. Water potentials of sweet corn organs
(leaf, stem and root, shown in red) were significantly higher than the soil water potential while water potentials among peanut organs (leaf, stem
and root, shown in blue) and soil were not statistically different. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Summary statistics for the models developed from internal training and testing data set for predicting leaf water status using
spectral reflectance (full range, from 400 to 2400 nm) and applied to an external validation data set.

Species Parameter
Internal training and testing External validation
Components Slope %RMSE Bias R2 p Value Slope %RMSE Bias R2 p Value

Both species Ψleaf 9 0.99 6.67 0.0054 0.82 <0.001 1.02 9.76 −0.1694 0.83 <0.001

RWC 4 1.02 15.95 −0.3354 0.64 <0.001 0.87 21.44 −4.6961 0.55 <0.001

EWT 5 0.98 11.52 0 0.75 <0.001 0.83 21.41 0.0014 0.35 <0.001

Sweet corn Ψleaf 5 0.95 16.06 −0.0043 0.62 <0.001 0.88 16.2 −0.1726 0.61 <0.001

RWC 2 1.03 17.36 0.2036 0.64 <0.001 0.75 25.27 −7.426 0.54 <0.001

EWT 1 1.13 15.66 −0.0001 0.22 <0.001 1.36 26.01 0.0022 0.17 0.012

Peanut Ψleaf 6 0.99 5.69 −0.0038 0.9 <0.001 1.04 12.91 −0.2368 0.83 <0.001

RWC 6 0.99 12.31 −0.062 0.77 <0.001 1.01 19.83 −2.7035 0.61 <0.001

EWT 4 1 9.09 0.0001 0.89 <0.001 1.1 9.37 −0.0002 0.9 <0.001

Abbreviations: EWT, equivalent water thickness; RWC, relative water content; %RMSE, root mean square error divided by 95% of trait range; Ψleaf, leaf
water potential.
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Conversely, PLSR models for sweet corn showed lower to

intermediate accuracy in predicting Ψpd (R2 = 0.62, RMSEP = 16.06%),

RWC (R2 = 0.64, RMSEP =17.36%) and EWT (R2 = 0.22, RMSEP =

15.66%). These models performed even less effectively

(R2 = 0.17–0.61, RMSEP= 16.02%–26.01%) when applied to an inde-

pendent data set. When combining the peanut and sweet corn data

sets, PLSR models showed intermediate to high accuracy for Ψpd

(R2 = 0.82, RMSEP= 6.67%), RWC (R2 = 0.64, RMSEP = 15.95%) and

EWT (R2 = 0.75, RMSEP= 11.52%). On independent validation for

pooled species data, Ψpd (R2 = 0.83, RMSEP = 9.76%) and RWC

(R2 = 0.55, RMSEP= 21.44%) maintained intermediate to high accuracy,

while EWT accuracy dropped significantly (R2 = 0.35, RMSEP = 21.44%).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

F IGURE 5 Plots of measured values against spectral reflectance (400–2400 nm) predicted values using partial least square regression on
external validation data sets for leaf water potential (Ψleaf), relative water content (RWC) and equivalent water thickness (EWT) of pooled species
(a–c), sweet corn (d–f) and peanut (g–i). Dark blue (red) points are from control (well‐watered) plants, and light blue (red) points are from peanut
(sweet corn) plants under drought treatment. The black line is the 1:1 line. The red line indicates the line of best fit using ordinary least squares
for each panel. We applied models generated from 100 iterations during training and testing to the corresponding spectral reflectance to get the
95% confidence intervals of each point. [Color figure can be viewed at wileyonlinelibrary.com]
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3.4 | Spectral reflectance (450–900 nm) models for
leaf, root and soil water status

After trimming the leaf spectral reflectance to the 450–900 nm range to

much the range of the sensor used for root and rhizosphere

hyperspectral imaging, the PLSR model for Ψpd, developed from the

peanut data set, retained high accuracy (R2 = 0.88, RMSEP = 6.61%). In

contrast, the PLSR models for Ψpd, developed from the sweet corn data

set (R2 = 0.5, RMSEP = 18.56%) and the pooled species data set

(R2 = 0.71, RMSEP = 8.52%), exhibited reduced accuracy (Table 2 and

Supporting Information S1: Figure 5). Furthermore, we applied the PLSR

models for Ψpd to three independent data sets, including peanut, sweet

corn and pooled species. The models performed less effectively on

these data sets compared to the internal training/testing (Table 2 and

Figure 6, R2 = 0.58–0.77, RMSEP = 14.82%–17.89%).

The PLSR models based on root and soil spectral reflectance also

performed well. The PLSR models for Ψroot and Ψsoil of individual

species demonstrated high accuracy (Table 2 and Supporting

Information S1: Figure 5, R2 = 0.78–0.9, RMSEP = 6.59%–10.13%).

When species were pooled, the PLSR models for Ψsoil maintained

high accuracy (Table 2 and Supporting Information S1: Figure 5,

R2 = 0.8, RMSEP = 7.5%), while the PLSR models for Ψroot lost

accuracy (Table 2 and Supporting Information S1: Figure 5,

R2 = 0.57, RMSEP = 10.89%). The application of PLSR models for

Ψroot and Ψsoil to the corresponding independent data sets yielded

mostly intermediate to high accuracy (Table 2 and Figure 6,

R2 = 0.68–0.91, RMSEP = 12.58%–17.71%).

3.5 | Wavelength importance and similarities
among plant organs and soil in visible and
near‐infrared range

The variable importance metric revealed broad similarities in the

spectral regions (400–2400 nm) important for predicting leaf water

status (Ψpd, RWC and EWT) across all three data sets (Supporting

Information S1: Figure 6). Important wavelengths were the green

bands at 550 nm, the red edge at 720 nm, as well as peaks around

1500 and 1800 nm in the SWIR region. The SWIR range from 750 to

1400 nm generally had greater importance in predicting peanut water

status compared to sweet corn and the combined species (Supporting

Information S1: Figure 6). When predicting Ψpd using the spectrum

spanning from 450 to 900 nm, important wavelength ranges shared

by all three data sets included peaks around 520 nm, the green bands

at 550 nm, 630 nm, and the red edge spanning 670–720 nm.

The important wavelengths showed considerable variations

when predicting peanut and sweet corn Ψroot (Supporting Informa-

tion S1: Figure 7). Wavelength bands in the 800–900 nm range were

important for predicting peanut Ψroot, while bands ranging from 450

to 625 nm were important for predicting sweet corn Ψroot. Combining

the peanut and sweet corn data sets, wavelength bands from 450 to

625 nm were important for predicting root water potential in both

species. Important wavelengths for predicting peanut soil water

potential included bands at 450, 520, and 575 nm, as well as several

bands in the 680–900 nm range. For predicting sweet corn soil water

potential, important wavelengths featured peaks at 520 nm and

multiple peaks within the 680–900 nm range (Supporting Information

S1: Figure 7). When combining the peanut and sweet corn data sets,

important wavelengths for predicting soil water potential comprised

peaks at 520, 580 and 740 nm (Supporting Information S1: Figure 7).

4 | DISCUSSION

Our models were able to predict leaf, root and soil water status from

spectral reflectance over a range of water stress intensities in two

species representing different drought response strategies. Even

though the soil water potential significantly declined in both species,

the hydraulic disequilibrium between soil and plant in the case of

sweet corn indicated that plant canopy spectra alone would be

TABLE 2 Summary statistics for the models developed from internal training and testing data set for predicting plant organs water potential
using spectral reflectance (VNIR, from 450 to 900 nm) and applied to an external validation data set.

Species Parameter
Internal training and testing External validation
Components Slope %RMSE Bias R2 p Value Slope %RMSE Bias R2 p Value

Both species Ψleaf 7 0.99 8.52 0.0012 0.71 <0.001 0.86 14.82 −0.139 0.59 <0.001

Ψroot 6 0.94 10.89 −0.0086 0.67 <0.001 1.25 17.71 −0.3983 0.58 <0.001

Ψsoil 8 0.97 7.5 0.0038 0.8 <0.001 1.26 12.58 −0.1272 0.81 <0.001

Sweet corn Ψleaf 7 0.91 18.56 −0.0144 0.58 <0.001 0.83 17.89 −0.2549 0.5 <0.001

Ψroot 7 1 8.6 0.0099 0.8 <0.001 0.89 14.69 −0.0072 0.84 <0.001

Ψsoil 5 0.98 6.99 −0.0017 0.87 <0.001 0.82 13.57 −0.0968 0.91 <0.001

Peanut Ψleaf 9 1.06 6.61 −0.0037 0.88 <0.001 1.2 16.11 −0.3427 0.77 <0.001

Ψroot 4 0.99 10.13 −0.0061 0.78 <0.001 1.25 16.4 −0.2158 0.81 <0.001

Ψsoil 6 0.99 6.59 0.0104 0.9 <0.001 1.14 14.45 −0.2879 0.86 <0.001

Abbreviations: VNIR, visible and near‐infrared range; %RMSE, root mean square error divided by 95% of trait range; Ψleaf, leaf water potential; Ψroot, root
water potential; Ψsoil, soil water potential.
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insufficient to detect declining soil water status conditions in some

species (Figure 7). Although we did not observe hydraulic segmenta-

tion between plant organs (Figure 4), it is important to acknowledge

that if segmentation had happened via leaf or terminal branch

shedding, it could influence the model's capacity to detect below-

ground processes from aboveground organs. Specifically, predicted

root water potentials would likely be significantly lower than the true

root water potential. Thus, quantifying the fine‐scale spatial

distribution of root and soil water status in a nondestructive way

will require spectral imagers deployed into the rhizosphere. While our

approach provides insight into the potential of hyperspectral

prediction of root and rhizosphere water status, important challenges

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

F IGURE 6 Plots of measured values against spectral reflectance (450–900 nm) predicted values using partial least square regression on
external validation data sets for leaf water potential (Ψleaf), root water potential (Ψroot) and soil water potential (Ψsoil) of pooled species (a–c),
sweet corn (d–f) and peanut (g–i). Dark blue (red) points are from control (well‐watered) plants, and light blue (red) points are from peanut (sweet
corn) plants under drought treatment. The black line is the 1:1 line. The red line indicates the line of best fit using ordinary least squares for each
panel. We applied models generated from 100 iterations during training and testing to the corresponding spectral reflectance to get the 95%
confidence intervals of each point. [Color figure can be viewed at wileyonlinelibrary.com]
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and next steps remain. Here, we outline potential scenarios where

soil–plant hydraulic disequilibrium may occur and provide a roadmap

for research in hyperspectral imaging of the plant rhizosphere.

Soil–plant disequilibrium can result from plant strategies to

maintain hydration or from soil characteristics. Our rhizoboxes were

relatively small in volume, relative to the soil volume that both peanut

and sweet corn are known to occupy under field conditions. While

box volume restricted root growth compared to field conditions, the

volume (of box and soil) was carefully controlled so that these effects

would be even across all plants, still allowing our study to quantify

hyperspectral signals in the soil for the first time. Notably, we

observed declines in plant and soil water potential similar to

what has been observed in previously published field studies

(Bennett et al., 1981; Xu, 2001). Species like sweet corn might

disconnect from dry soils (Figure 4) through reductions in aquaporin

expression, root shrinkage, root hair death, suberization of cortical

cells, cortical lacunae formation and mucilage exudate formation

(Carminati, 2012; Cuneo et al., 2016; Duddek et al., 2022; Shekoofa

& Sinclair, 2018) to avoid low water potentials and lethal levels of

embolism (Duddek et al., 2022; North & Nobel, 1997). These

processes can severely increase the hydraulic resistance of roots

making it account for >95% of the whole‐plant hydraulic continuum

resistance in moderately water‐stressed plants (Rodriguez‐

Dominguez & Brodribb, 2020) and minimize soil–plant flows. As

such, soil water may have an easier time travelling from the soil to the

atmosphere via evaporation than through a plant that has increased

the soil‐to‐plant hydraulic resistance in response to drought stress,

leading to increasingly different soil and plant water potentials over

time. Alternatively, soil–root disconnection might occur due to the

shrinkage of soil (Affortit et al., 2024; Cai et al., 2022), a process

typical of clay‐rich soils. Hydraulically disconnecting roots from the

soil during severe drought may offer advantages during prolonged

drought as they create a longer ‘hydrated’ phase for plants (Mackay

et al., 2015; Nobel & Cui, 1992), effectively extending the time to

(a) (c)

(d)(b)

F IGURE 7 Plots of spectral reflectance (400–2400) predicted leaf potential (Ψleaf) against measured and spectral reflectance (450–900)
predicted soil (Ψsoil, a and b) and root (Ψroot, c and d) water potentials. Estimating Ψsoil based on reflectance estimates of Ψleaf in species that
disconnect from the soil will overestimate Ψsoil (a). Only species that maintain hydraulic continuity with the soil under drought hold a 1:1
relationship between Ψsoil and Ψleaf that enables the prediction of soil water deficit based on canopy spectral reflectance (a). The black line is the
1:1 line. [Color figure can be viewed at wileyonlinelibrary.com]
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hydraulic failure (Hammond & Adams, 2019). However, this

disconnection comes as a recovery cost—it requires time and energy

for plants to restore physiological functions, as shown in the

relatively slower sweet corn recovery of photosynthetic capacity

(Fv/Fm), which took at least 2 days longer to recover than peanut

after rehydration. In contrast, species like peanut which maintain

hydraulic connections with the surrounding soil (Figure 4), risk

exposure to lethal water potentials. Maintaining hydraulic connection

with the soil during severe droughts could be advantageous during

short droughts as physiological recovery might be quicker relative to

species that experience disequilibrium. Maintaining hydraulic connec-

tion might also be beneficial in plants highly resistant to embolism

formation (i.e., low P50) as they would experience minimal impact on

plant function. Thus, we expect that although it has never been

measured, Arachis hypogaea L. may be highly resistant to hydraulic

failure, allowing plants to avoid hydraulic dysfunction while providing a

means of rapid recovery. Notably, published values of P50 for Zea

mays P50 are −1.2MPa (Gleason et al., 2017), indicating that our

observation of disequilibrium may evidence a hydraulic dysfunction

avoidance strategy. While leveraging plant canopies as signal

transducers for belowground processes have been previously pro-

posed (Bagherian et al., 2023; Ramírez et al., 2023), we urge caution as

sensing of rhizosphere water status through canopy spectra should

thus be constrained to those species and soil conditions known to

favour hydraulic continuity under drought (Figure 7).

It is critically important to identify the most informative

wavelengths to predict water status across the soil–plant–

atmosphere continuum. Present technologies aimed at imaging the

rhizosphere are limited to monochrome or RGB imagery (Johnson

et al., 2001; Xu et al., 2022). Given the current size and working

distance of hyperspectral imagers, deploying this technology below-

ground in an unconstrained rooting zone is not yet possible. Thus,

one of the most immediate future steps is identifying wavelengths

suitable for the development of small, field‐deployable multi‐ and

hyperspectral imagers for further study of rhizosphere function (and

dysfunction). In our study, we identified important wavelengths

shared across models (Supporting Information S1: Figures 6 and 7;

wavelengths 450–550, 650–750, 1500–1800 nm), while others

appeared to be species‐specific. Wavelengths at 500–550,

650–750 and 1500–1800 nm of the plant spectrum are associated

with pigment content, stress conditions, photosynthetic activities and

water content (Eitel et al., 2011; Ely et al., 2019; Peters &

Noble, 2014). Their commonality across species and organs such as

leaves and roots is thus expected due to their direct relationship to

water status or to reduced pigment function caused by slow

metabolism and increased oxidative stress when water is scarce. In

the case of soil spectra, wavelengths 450–550 and 650–750 nm are

associated with soil organic content (Conforti et al., 2018). In our

case, specific wavelengths might be exclusive to our studied species

or a feature of their differing drought response strategies. Exploring

the extent to which wavelength importance may be associated with

drought response strategy ‐as illustrated with peanut and sweet

corn‐ should be a priority to resolve. Studies of buried rhizoboxes,

and the development of small multispectral imagers capable of

rhizosphere imaging, will help validate the use of these wavelengths

and scale the approaches outlined here to less‐restricted soil

environments.

While we have revealed the potential for hyperspectral imaging

to detect plant root and soil functional states, a diversity of other soil

conditions needs to be similarly tested. The media used in our

rhizoboxes (greens grade) was selected due to its homogeneity

relative to most field soils. This simplification provided a more

homogenous soil environment, with low organic matter and an even

pore size. Our experiment's simplified media allowed us to unveil the

potential for spectral mapping of rhizosphere water status, but future

research should seek to understand its efficacy in soil environments

of increasing complexity. Complex soils are rich and diverse in

chemistry and structure, and roots share space with other organisms

such as mycorrhiza and microbial communities (Zhou et al., 2022).

Soil chemistry and structure, mycorrhiza and microbes all interact

with plant roots in processes of water uptake and retention (Sangwan

& Prasanna, 2022). Each of these elements has its own spectral

signature. Sensing the identity and function of mycorrhiza, soil

microbial communities and their functions, and developing diagnos-

tics for soil characteristics might be possible through imagers capable

of rhizosphere mapping. From a plant physiology perspective, future

studies may also wish to explore the degree to which hydraulic

continuity and disequilibrium are strategies more or less associated

with plant photosynthetic pathways (e.g., C3, C4 or crassulacean acid

metabolism). Stressors in the soil are similarly diverse; here, we have

shown the potential for monitoring soil and plant root responses to

drought stress, yet inundation (Lagomasino et al., 2021), saltwater

intrusion (Middleton & David, 2022) and freezing stress (Prerostova

et al., 2021) all routinely impact the rhizosphere environment and

deserve further study.

5 | CONCLUSION

Our study provides the first evidence of the potential for hyper‐ and

multispectral approaches to quantify not just structure, but function,

in the rhizosphere in a nondestructive manner. These nondestructive

measures of plant and soil water status have numerous applications,

especially at the root–soil interface. Future studies that follow similar

approaches should use less constrained rooting environments, which

could also enable real‐time study of root architecture and develop-

ment in response to water deficit. Our modelling approach paves the

way for future research to quantify root water status at a spatial scale

not previously possible on intact plants. On our warming planet, plant

water status is important for the many services that plants provide in

natural and agricultural systems; being able to monitor these dynamic

systems in a nondestructive way may provide numerous insights.

Future work is needed to understand the additional rhizosphere

processes to which our approach may be extended and the full

potential of hyperspectral rhizosphere imaging for nondestructive

detection of signals in the soil.
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