Hyperspectral signals in the soil: Plant-soil hydraulic connection and disequilibrium as mechanisms of drought tolerance and rapid recovery

Yangyang Song1 | Gerard Sapes1 | Spencer Chang2 | Ritesh Chowdhry2 | Tomas Mejia2 | Anna Hampton2 | Shelby Kucharski3 | T. M. Shahiar Sazzad2 | Yuxuan Zhang2 | Barry L. Tillman4 | Márcio F. R. Resende Jr5 | Sanjeev Koppal2 | Chris Wilson1 | Stefan Gerber6 | Alina Zare2 | William M. Hammond1

1Agronomy Department, University of Florida, Gainesville, Florida, USA
2Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA
3School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA
4North Florida Research and Education Center, University of Florida, Marianna, Florida, USA
5Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA
6Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, Florida, USA

Correspondence
Yangyang Song and William M. Hammond, Agronomy Department, University of Florida, Gainesville, FL, USA. Email: yangyangsong2015@outlook.com and williamhammond@ufl.edu.

Alina Zare, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA. Email: azare@eng.ufl.edu

Funding information
Florida Peanut Producers Association; Southeastern Peanut Research Initiative; National Institute of Food and Agriculture; U.S. Department of Agriculture

Abstract
Predicting soil water status remotely is appealing due to its low cost and large-scale application. During drought, plants can disconnect from the soil, causing disequilibrium between soil and plant water potentials at pre-dawn. The impact of this disequilibrium on plant drought response and recovery is not well understood, potentially complicating soil water status predictions from plant spectral reflectance. This study aimed to quantify drought-induced disequilibrium, evaluate plant responses and recovery, and determine the potential for predicting soil water status from plant spectral reflectance. Two species were tested: sweet corn (Zea mays), which disconnected from the soil during intense drought, and peanut (Arachis hypogaea), which did not. Sweet corn’s hydraulic disconnection led to an extended ‘hydrated’ phase, but its recovery was slower than peanut’s, which remained connected to the soil even at lower water potentials (~5 MPa). Leaf hyperspectral reflectance successfully predicted the soil water status of peanut consistently, but only until disequilibrium occurred in sweet corn. Our results reveal different hydraulic strategies for plants coping with extreme drought and provide the first example of using spectral reflectance to quantify rhizosphere water status, emphasizing the need for species-specific considerations in soil water status predictions from canopy reflectance.

Keywords
drought, hyperspectral reflectance, pre-dawn disequilibrium, recovery, rhizosphere
Drought poses a substantial and escalating threat to global crop production and survival (Dwivedi et al., 2018). Climate change-induced droughts and heatwaves have the potential to intensify one another (Mickelbart et al., 2015), leading to more frequent and severe droughts (Alizadeh et al., 2020; Legg, 2021), and to exacerbating risk of their especially dangerous combination, so-called ‘hotter-drought’ (Hammond et al., 2022). Edaphic drought (i.e., soil-related), in particular, will significantly threaten the productivity of dryland areas covering approximately 41% of the Earth’s land surface, which provides food security for over 38% of the global population (Reynolds et al., 2007). While various studies have detailed the physiological responses of aboveground plant organs to edaphic drought (Fábregas & Ferrie, 2019; Gupta et al., 2020), and although scientists succeed in assessing soil water status during edaphic droughts (Whalley et al., 2013; Ma et al., 2019), monitoring water status at the root–soil interface remains challenging. Notably, plants can become disconnected from the drying soil (Duddek et al., 2022), resulting in a pre-dawn disequilibrium in water potentials between soil and plant. Thus, to better understand the incoming droughts on plant growth and survival, we need a comprehensive understanding of plant drought responses and recovery, along with high-throughput methods to assess plant water status, particularly focusing on the root–soil interface.

Edaphic droughts directly affect the soil–plant–atmosphere continuum upon which plant productivity and growth depend. The soil–plant–atmosphere continuum allows water movement from the soil through the plant vascular system to the atmosphere following a declining water potential gradient (Elving et al., 1972). During drought, plants close stomata to reduce water loss, decreasing transpiration and photosynthesis (Martin-StPaul et al., 2017; Scoffoni & Sack, 2017). As drought intensifies, increased tension can induce emboli formation in xylem conduits. Embolism of distal organs (e.g., leaves, fine roots) may cause hydraulic segmentation and act as a ‘hydraulic fuse’, to limit the tension and embolism formation in the xylem of proximal organs (Cuneo et al., 2016; Michaletz, 2018; Wolfe et al., 2016). The embolized xylem impedes water transport and ultimately leads to distal organ death (McDowell et al., 2022) but reduces the risk of death in more proximal organs from which plants can often resprout (e.g., main stem, coarse roots). Pre-dawn leaf water potential (Ψ_{pd}) is widely used as a proxy of soil water potential (Ψ_{soil}) as the water potentials of leaves and soil are assumed to equilibrate overnight in the absence of transpiration (Li et al., 2019; Samuelson et al., 2014). However, despite this broad assumption about plant–soil equilibrium before daily transpiration, pre-dawn disequilibrium has been documented to occur in various plant species (Donovan et al., 1999, 2001, 2003; Groenveld et al., 2023; Scholz et al., 2007). This disequilibrium has been attributed to factors such as night-time transpiration, accumulation of apoplastic solutes in leaves, and a failure to restore tissue capacitance during the night (Bucci et al., 2004; Cavender-Bares et al., 2007). Disequilibrium can also occur when soil undergoes drying, with the initial response being root hair shrinkage, progressing to the formation of cortical lacunae, fine root mortality and subsequent coarse root shrinkage (Cuneo et al., 2016; Duddek et al., 2022). Additionally, root exudates such as mucilage may enhance water retention in the rhizosphere compared to the surrounding soil during drying (Carminati, 2012). These mechanisms might serve to prevent plant exposure to potentially lethal soil water potentials. Because plant and soil water potential at pre-dawn can become decoupled, Ψ_{pd} can mechanistically serve as the parameter to assess the degree of decoupling during drought. Such decoupling should increase over the course of a severe drought and may dictate recovery rates. However, pre-dawn disequilibrium studies have been primarily conducted under well-watered or mild drought conditions (Donovan et al., 1999, 2001; Groenveld et al., 2023). A comprehensive evaluation of plants transitioning from well-watered conditions to severe drought could provide a more thorough understanding of the connection between plant and soil water status and reveal when disequilibrium occurs, and why.

Direct measurements of plant water status have predominantly focused on above-ground tissues, while monitoring root water status has been limited due to the difficulty in accessing roots (Chang et al., 2023). Commonly used leaf water status metrics include leaf equivalent water thickness (EWT), relative water content (RWC), and leaf water potential (Ψ_{leaf}). The EWT, calculated as the absolute water content per leaf area unit, serves as an indicator of overall plant drought conditions (Xu et al., 2020). The RWC reflects the overall plant water balance and indicates leaf cell volume shrinkage (Martínez-Vilalta et al., 2019; Sack et al., 2018). The Ψ_{leaf} represents the driving force of water movement and is used to document critical physiological states, including the point of stomatal closure, bulk turgor loss, and hydraulic failure (Bartlett et al., 2012; Hammond et al., 2019; Rodríguez-Domínguez et al., 2022). Water potential and RWC could also be used to assess root water status. However, traditional measurements of plant RWC or water potential require either extensive tissue excision or the use of a pressure chamber or psychrometers, limiting their application to small-scale or low-throughput assessments. The advancement of real-time spectral prediction techniques enables the continuous and noninvasive assessment of leaf water status, such as leaf EWT (Féret et al., 2019), leaf RWC (Ihuoma & Madramootoo, 2019) and the turgor loss point (Castillo-Argaez et al., 2024). However, recent root imaging technologies, such as digging out and imaging (Le Bot et al., 2010; Shen et al., 2020), magnetic resonance imaging (Haber-Pohlmeier et al., 2019; Pflugfelder et al., 2017), minirhizotron (MR) systems (Glaoague et al., 2019; Zurbau et al., 2018) and rhizoboxes (Glaoague et al., 2022; Song et al., 2021), have primarily focused on root phenology and structure, including rooting depth, root length, root surface area and root volume. Among the various options, for field studies of root water status, the MR system would be ideal if appropriate spectral reflectance sensing technology could be developed. However, no existing study has identified wavelengths important for predicting soil and root water status, which are critical for developing a multi- or hyperspectral MR system. A standard MR system consists of an imaging station and an RGB camera equipped with an LED light, which moves within a transparent tube inserted underground, enabling continuous and noninvasive monitoring of roots.
With the appropriate lighting and identification of the critically important wavelengths to predict root and soil water status, this system could enable functional insights on the soil-root interface during edaphic droughts, similar to recent advances made in the spectral ecophysiology of leaves (Castillo-Argazc et al., 2024).

One critical challenge for assessing pre-dawn disequilibrium is the difficulty in directly sensing the water status of roots and soil, especially at the plant-soil interface. Plant spectroscopy could potentially be used to predict plant and rhizosphere water status in high-frequency and nondestructively due to its success in sensing many traits and states of plants and soil. For example, hyperspectral reflectance can predict plant stress, health, and chemistry, including foliar nutrients (Grieco et al., 2022), pigment composition (Blackburn et al., 2007) and vegetation water content (Hanavan et al., 2015), as well as soil organic carbon (Bangelesa et al., 2020), soil water content (Babaeian et al., 2015) and soil nutrients (Guo et al., 2021). Reflectance has been used to monitor leaf and canopy water status using spectral indices that use a few specific wavelengths (Sapes et al., 2024). However, the belowground organs remain unexplored when sensing plant-soil water relations. While some studies have used the whole visible (VIS) to shortwave infrared (SWIR) range (hyperspectral reflectance) to phenotype root morphology and structure (Bodner et al., 2018; Narisetti et al., 2021), predicting root water status remains a serious challenge. Using hyperspectral reflectance imaging during plant dehydration and rehydration could provide a more comprehensive understanding of water status, considering that both water content and water potential could potentially serve as reliable indicators of plant water status (Xu et al., 2020) and that hyperspectral reflectance imaging provides spatially explicit information.

Here, we investigate the response and recovery of *Arachis hypogaea* L. (peanut) and *Zea mays* (sweetcorn) during an experiment of extreme drought and recovery while they are growing in rhizoboxes accessible for hyperspectral imaging above- and below-ground. Peanuts and sweetcorn were chosen to represent C3 and C4 species and varying leaf phenology. We develop spectral models for leaf, root and soil water status capable of predicting water potential disequilibrium and identified crucial spectral signals associated with plant and soil water status. We designed our study to test the following three hypotheses:

1. Severe drought conditions will lead to pre-dawn water potential disequilibrium between plant and soil water status.
2. Spectral reflectance can accurately predict the water status of plant organs and soil.
3. Leaf spectral reflectance will be a good predictor of soil water status until disequilibrium occurs.

2 MATERIALS AND METHODS

2.1 Rhizobox construction

Plants were planted as seeds and cultivated in rhizoboxes (L × W × D: 34.5 × 21 × 3.8 cm). The choice of rhizobox dimensions was restricted to the hyperspectral camera’s focal depth, and the available space in the dark imaging booth. Although this relatively small volume could impact plant root development, the dimensions of all rhizoboxes were rigorously controlled to ensure uniform effects across all plants. The rhizobox was made of black lightproof plastic on the bottom and three sides of the body. The fourth side was made of a transparent polycarbonate resin sheet (Lexan®, L × W: 35.5 × 21.5 cm) to visualize root growth and development. Foam weatherstripping was placed between the plastic edge and Lexan sheet and the plastic boxes. In addition, all edges and screws used for constructing the rhizobox were sealed with black opaque liquid electrical tape as a sealant to prevent water leaks. Three drainage holes were made on the bottom of the rhizobox to allow water drainage, and a piece of 400 mesh (37 µm) screen placed inside the box covered these holes to prevent soil loss during irrigation. The top of each rhizobox was covered using transparent plastic cling wrap to reduce water loss from evaporation; drain holes at the bottom of the boxes were left uncovered to prevent inundation during watering. The growing medium for this experiment was a fritted calcined clay, Profile Porous Ceramic (Greens Grade™; Turface Athletics), hereafter referred to as ‘soil’. We filled each rhizobox with approximately 1500 g of soil and over-irrigated, drip-dried and weighed them multiple times to ensure the soil in each box reached its saturation point. The weights of dry soil and saturated soil were recorded.

2.2 Experiment design and treatment

Experiments were carried out using two plant species, peanut (*Arachis hypogaea* L.) and sweet corn (*Zea mays* L.). Two sweet corn lines, IL4H/S213531 and IL395a/S213532, and peanut genotype TUFRunner™ ‘511’ (Tillman & Gorbet, 2017) and line 10 × 34-4-4-1-2, were grown in 64 rhizoboxes, with 16 boxes per genotype. One seed per box for sweet corn and peanut was sown on 19 and 26 May 2022, respectively. During the experiment, each rhizobox was kept in an opaque white bubble-padded envelope (lightproof) to minimize physical scratches on the Lexan sheet and reduce the effects of light interference and temperature fluctuation on root growth. Groups of 10 rhizoboxes were arranged in containers and placed on a greenhouse bench. Each container was placed on a wooden table easel inclined at a 30° angle, with the transparent side of all the rhizoboxes facing down. This ensured that roots would grow against the transparent sheet following gravitropism (Glauguen et al., 2022). Temperatures ranged between 16°C and 33°C and relative humidity ranged between 70% and 85% based on greenhouse environmental control settings. Light reaches ~1200 Umol m⁻² s⁻¹ of photosynthetic photon flux density (PPFD) during full sun exposure. Once the seedling emerged, a small hole was made in the plastic cling wrap at the top of the rhizobox to allow the upward growth of the shoot unimpeded. After emergence, we top-dressed each rhizobox with one scoopful controlled-release fertilizer ‘osmocote’ (Osmocote, 15:9:12 N–P–K; The Scotts Company), so that the fertilizer would not be in the soil but able to leach nutrients during watering. Additionally, 1 L of water
(Supporting Information S1: Figure 1, approximately 1 L water saturated the soil in each box) was added to each box daily until 41 days after planting (DAP) for sweet corn and 78 DAP for peanut, respectively (Figure 1). After which, we stopped the irrigation for 11 rhizoboxes per genotype to initiate dehydration and the other five rhizoboxes served as reference for well-watered plants (Figure 1). During dehydration, 1–2 rhizobox were sampled for destructive measurements of plant leaf, stem, root and soil when the Ψ_{pd} reached 0 to -0.5 (Ψ_1), -0.5 to -1.0 (Ψ_2), -1.0 to -1.5 (Ψ_3), -1.5 to -2.0 (Ψ_4) and -2.0 to -3.0 (Ψ_5) MPa for sweet corn and reached around 0 to -1.0 (Ψ_1), -1.0 to -2.0 (Ψ_2), -2.0 to -3.0 (Ψ_3), -3.0 to -4.0 (Ψ_4) and <-4.0 (Ψ_5) MPa for peanut (Figure 1). The water supply (1 L per box daily) resumed at 70 and 91 DAP until the end of the experiment (75 and 96 DAP) for sweet corn and peanut, respectively (Figure 1). The other five drought-treated rhizoboxes per crop species were used to assess drought recovery after rehydration (Figure 1).

2.3 | Data collection

Plant physiological measurements were taken for the plants in each rhizobox. All plants were carefully transported from the greenhouse to the lab (where temperature was maintained at 22°C) at 4:30 AM to ensure the plants were well dark-adapted. We first measured the chlorophyll fluorescence to assess plant health and function during dehydration. Measurements were taken on a fully expanded peanut leaf on (or close to) the second node from the apex or the newly mature sweet corn leaf using an Imaging-PAM (Walz). The maximum potential quantum efficiency of Photosystem II (F_v/F_m) was obtained by averaging the F_v/F_m values of the imaged leaf area. Following the F_v/F_m measurements, we removed one mature and healthy leaf per box to measure Ψ_{pd} with a Scholander pressure chamber (model 1505D-EXP; PMS Instrument) by gradually increasing the pressure at a rate of 0.01 MPa s$^{-1}$ until the meniscus of the xylem sap was VIS at the cut surface (Bitterlich et al., 2018). After the water potential measurement, we determined the RWC of the same leaf using the following formula:

$$RWC = \frac{\text{freshweight} - \text{dryweight}}{\text{saturatedweight} - \text{dryweight}} \times 100.$$

We weighed the fresh leaf and then measured the leaf area by using a leaf area metre (Li-Cor 3000; Li-Cor BioSciences). To obtain saturated weight, we submerged the leaf petiole in tap water for 2 h (Zwieniecki et al., 2007) for corn and 16 h for peanut, respectively, in the dark at 4°C to prevent oversaturation artifacts resulting from low osmotic potential due to starch conversion into sugars (Boyer et al., 2008). The rehydration time for a peanut leaf was obtained from a full rehydration curve.

FIGURE 1 Illustration of the experiment design, using peanut genotype TUFRunner™ ‘S11’ as an example. (a) The process of the experiment, (hyper)spectral imaging and physiological measurements initiated on the first day of drought were applied until the end of the experiment. (b) The treatments applied to boxes; boxes 1–5 received full irrigation and were destructed on the last day of the experiment, serving as the controlled reference group. Intact boxes 6–10 experienced drought, and were destructively harvested for validation data on Day 2 and Day 7 after being rewated. Boxes 11–16 experienced drought and were destructively harvested for validation data on the day when the soil water potential reached specific values ranging from wettest to driest. [Color figure can be viewed at wileyonlinelibrary.com]
Hyperspectral imaging area to determine soil and root water potential

We destructively harvested two rhizoboxes, immediately collecting root samples and four soil samples per rhizobox from the imaged area was 8 cm × 15 cm, with a camera working distance of 1 m. The spectral reflectance of roots and soil was obtained through excavation and excising an intact secondary root and inserting it into the pressure chamber with the cut end facing upwards immediately after dismantling the rhizobox. Subsequently, we gradually increased the pressure at a rate of 0.01 MPa s⁻¹ until the meniscus of the xylem sap became VIS at the cut surface (Bitterlich et al., 2018), the balancing pressure at this point was multiplied by -1, and recorded as \(\Psi_{\text{root}} \).

2.4 Statistical analysis

Statistical analyses were performed in R (version 4.2.2; R Core Team, 2020). Because we did not observe significant genotypic differences (\(p < 0.05 \)) for both sweet corn and peanut, we deemed differences among genotypes to be scientifically trivial and therefore chose to pool data among genotypes within a species. Two-way analysis of variance (ANOVA) was used to test the significance of treatment effects at \(p < 0.05 \) level, followed by a Tukey honest significant difference post hoc analysis. For each species, we compared \(F_{s}/F_{m} \), \(\Psi_{\text{rd}} \) and leaf RWC and EWT between well-watered and drought-treated plants among sampling days. We also assessed the differences among leaf, stem, root and soil pre-dawn water potential within each species on the driest day using one-way ANOVA. Trait values were presented as mean ± standard errors in the text.

Partial least square regression (PLSR, R package ‘pls‘) was performed to develop a predictive model of plant and soil water status using spectral reflectance. The PLSR models were performed on three data sets: the sweet corn data set (\(n = 183 \) for leaf and \(n = 161 \) for root and soil), peanut data set (\(n = 154 \) for leaf and \(n = 134 \) for soil and root) and the combined data set (\(n = 337 \) for leaf and \(n = 295 \) for soil and root) of sweetcorn and peanut. Before model training, a representative 20% of the data was set aside using the Kennard- Stone algorithm (R package ‘prospectr‘) which ensures even sampling across the range and distribution of a target variable. The 80% left was used for training and testing. The training and testing process used an iterative method with 100 iterations. Briefly, each iteration randomly divided the training and testing data set into two groups. The two groups were generated using a stratified random sampling where data within each octile of the distribution was randomly allocated 80% into training and 20% into testing. This method ensured even sampling across the whole distribution of values within each iteration, which is important when data is not evenly distributed across the whole range of values. Within each iteration, the training subset was used to build a PLSR model. This model was then validated against the testing group and its performance was assessed based on root mean square error of prediction in percentage (%RMSE), \(R^2 \), slope and bias. The leaf spectral reflectance ranging from 400 to 2400 nm at a resolution of 1 nm was first used to develop PLSR models to predict \(\Psi_{\text{rd}} \), leaf RWC
and leaf EWT. To compare models and wavelength importance (using ‘varImp’ in R package ‘caret’) among leaf, root and soil, a second set of PLSR models was built using leaf spectra reflectance trimmed to 450–900 nm with a spectra resolution of 2 nm to meet the settings of the hyperspectral reflectance camera. The PLSR models based on spectral reflectance ranging from 450 to 900 nm were performed to predict leaf, root and soil water status. We have used Ψ_{pd} to represent Ψ_{root} and Ψ_{soil} in this data set under the assumption that hydraulic equilibrium happened among plant organs and soil. Data sets of estimated Ψ_{root} and Ψ_{soil} (Ψ_{pd} estimated) and corresponding spectral reflectance served as internal training and testing data sets. Data sets consisted of measured Ψ_{root} and Ψ_{soil} from harvested rhizoboxes and corresponding spectral reflectance served as independent validation data sets. For each PLSR model, the number of components was determined by choosing the number that resulted in the smallest RMSE during training (Cohen et al., 2010). The 100 models resulting from the 100 iterations of training and testing were applied to the validation data set to validate model performance on data that was not involved in building the models. Models with high R^2, low %RMSE, low bias and a slope between measured and predicted values close to 1 were considered higher-performing models.

3 | RESULTS

3.1 | Physiological response during dehydration

At the beginning of dehydration (Day 0), all plants were well-watered. Both sweet corn and peanut leaves had high photosynthetic potential, with unstressed peanut leaf F_v/F_m being slightly higher than sweet corn (0.85 ± 0.003 vs. 0.78 ± 0.004, $p < 0.05$). Upon drought initiation, peanut plant tissues dried faster than sweet corn, as sweet corn reached 75% leaf RWC on Day 6 while peanut reached 75% leaf RWC on Day 4 (Figure 2c,f). As a result, sweet corn Ψ_{pd} declined much slower than peanut Ψ_{pd} and most plants maintained a Ψ_{pd} around −2.0 MPa (Figure 2b). However, peanut Ψ_{pd} kept declining during the entire drought period (11 days), and the average Ψ_{pd} reached a minimum of −4.0 MPa (Figure 2e). Both stressed sweet corn (Day 15 and Day 23) and peanut (Day 7 and Day 11) plants showed lower leaf F_v/F_m (absolute value 0.1 for sweet corn and 0.04 for peanut averaged across days) than well-watered plants ($p < 0.05$, Figure 2a,d), but sweet corn (Day 23) had a greater reduction in F_vF_m (0.107 vs. 0.053) than peanut ($p < 0.05$, Day 11). After rehydration, the Ψ_{pd} and leaf RWC of both sweet corn and peanut recovered, and

![FIGURE 2](https://onlinelibrary.wiley.com/doi/10.1111/pce.15011) Plant leaf chlorophyll fluorescence, water potential (Ψ_{leaf}) and relative water content (RWC) of sweet corn (a–c) and peanut (d–f) during dehydration and rehydration. Dashed lines indicate plants that were subjected to drought and solid lines indicate plants that were well-watered. The yellow-shaded area in each panel refers to days that drought treatment was applied to the rhizoboxes shown by dashed lines. Regression lines in each panel are made using loess functions, and the 95% confidence interval is present as a shaded area around each regression line. [Color figure can be viewed at wileyonlinelibrary.com]
showed no differences compared with well-watered leaves, at 2 days after rewatering ($p < 0.05$, Figure 2b,c,e,f). However, sweet corn F_v/F_m recovered slower than peanut, with peanut showing no differences between rehydrated and control plants (0.85 ± 0.004 vs. 0.85 ± 0.002, $p < 0.05$, Figure 2d), while sweet corn showed lower F_v/F_m in rehydrated plants than control plants (0.74 ± 0.01 vs. 0.78 ± 0.009, $p < 0.05$, Figure 2a).

During the drought, peanut plants consistently maintained an F_v/F_m value greater than 0.75, while sweet corn experienced a steep decline after reaching a Ψ_{pd} of -1.0 MPa. F_v/F_m also reached a minimum of -0.5 in sweet corn, near a hypothesized lethal limit of F_v/F_m for photosystems (Guadagno et al., 2017, Figure 3a). Sweet corn plants closed their stomata at Ψ_{pd} around -1.2 MPa, while peanut plants closed their stomata at Ψ_{pd} around -2.1 MPa (Figure 3c). The stomatal closure difference between sweet corn and peanut also led to the different A_{net} and transpiration rates between -1 and -2 MPa of Ψ_{pd} ($p < 0.05$, Figure 3b,d).

3.2 Pre-dawn disequilibrium

On the driest day of the drought—corresponding to Day 23 for sweet corn and Day 11 for peanut plants—we observed a pre-dawn disequilibrium between plant and soil water potential (Supporting Information S1: Figure 3, Figure 4). Sweet corn had Ψ_{pd}, Ψ_{stem} and Ψ_{root} at approximately -2.0 MPa, but the Ψ_{soil} was at -2.86 ± 0.08 MPa, significantly lower ($p < 0.05$) than all plant organs. This disequilibrium was not seen in peanut, which still had equilibrated water potentials even at $\Psi_{soil} = -4.0$ MPa.

3.3 Leaf spectral reflectance (400–2400 nm) models for leaf water status

Leaf spectral reflectance provided varying estimates of leaf water status across organs and species (Table 1, Figure 5 and Supporting Information S1).
Information S1: Figure 4). Our peanut-based PLSR models achieved predictions for Ψ_{pd} ($R^2 = 0.9$, root mean square error of prediction [RMSEP] = 5.69%), RWC ($R^2 = 0.77$, RMSEP = 12.31%) and EWT ($R^2 = 0.89$, RMSEP = 9.09%). When applied to an independent data set, these models delivered predictions for Ψ_{pd} ($R^2 = 0.83$, RMSEP = 12.91%), RWC ($R^2 = 0.61$, RMSEP = 19.83%) and EWT ($R^2 = 0.9$, RMSEP = 9.37%) with intermediate to high accuracy.

FIGURE 4 Water potentials of leaf, stem, root and soil of sweet corn (red boxplots) and peanut (blue boxplots) on the last day of drought treatment (e.g., at their most dehydrated state), taken from the destructively harvested validation boxes. Water potentials of sweet corn organs (leaf, stem and root, shown in red) were significantly higher than the soil water potential while water potentials among peanut organs (leaf, stem and root, shown in blue) and soil were not statistically different. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Summary statistics for the models developed from internal training and testing data set for predicting leaf water status using spectral reflectance (full range, from 400 to 2400 nm) and applied to an external validation data set.

<table>
<thead>
<tr>
<th>Species</th>
<th>Parameter</th>
<th>Internal training and testing</th>
<th>External validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Components</td>
<td>Slope</td>
<td>%RMSE</td>
</tr>
<tr>
<td>Both species</td>
<td>Ψ_{leaf}</td>
<td>9</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>RWC</td>
<td>4</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>EWT</td>
<td>5</td>
<td>0.98</td>
</tr>
<tr>
<td>Sweet corn</td>
<td>Ψ_{leaf}</td>
<td>5</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>RWC</td>
<td>2</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>EWT</td>
<td>1</td>
<td>1.13</td>
</tr>
<tr>
<td>Peanut</td>
<td>Ψ_{leaf}</td>
<td>6</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>RWC</td>
<td>6</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>EWT</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Abbreviations: EWT, equivalent water thickness; RWC, relative water content; %RMSE, root mean square error divided by 95% of trait range; Ψ_{leaf}, leaf water potential.
Conversely, PLSR models for sweet corn showed lower to intermediate accuracy in predicting Ψ_{pd} ($R^2 = 0.62$, RMSEP = 16.06%), RWC ($R^2 = 0.64$, RMSEP = 17.36%) and EWT ($R^2 = 0.22$, RMSEP = 15.66%). These models performed even less effectively ($R^2 = 0.17$–0.61, RMSEP = 16.02%–26.01%) when applied to an independent data set. When combining the peanut and sweet corn data sets, PLSR models showed intermediate to high accuracy for Ψ_{pd} ($R^2 = 0.82$, RMSEP = 6.67%), RWC ($R^2 = 0.64$, RMSEP = 15.95%) and EWT ($R^2 = 0.75$, RMSEP = 11.52%). On independent validation for pooled species data, Ψ_{pd} ($R^2 = 0.83$, RMSEP = 9.76%) and RWC ($R^2 = 0.55$, RMSEP = 21.44%) maintained intermediate to high accuracy, while EWT accuracy dropped significantly ($R^2 = 0.35$, RMSEP = 21.44%).

FIGURE 5 Plots of measured values against spectral reflectance (400–2400 nm) predicted values using partial least square regression on external validation data sets for leaf water potential (Ψ_{leaf}), relative water content (RWC) and equivalent water thickness (EWT) of pooled species (a–c), sweet corn (d–f) and peanut (g–i). Dark blue (red) points are from control (well-watered) plants, and light blue (red) points are from peanut (sweet corn) plants under drought treatment. The black line is the 1:1 line. The red line indicates the line of best fit using ordinary least squares for each panel. We applied models generated from 100 iterations during training and testing to the corresponding spectral reflectance to get the 95% confidence intervals of each point. [Color figure can be viewed at wileyonlinelibrary.com]
3.4 Spectral reflectance (450–900 nm) models for leaf, root and soil water status

After trimming the leaf spectral reflectance to the 450–900 nm range to much the range of the sensor used for root and rhizosphere hyperspectral imaging, the PLSR model for Ψ_{leaf}, developed from the peanut data set, retained high accuracy ($R^2 = 0.88$, RMSEP = 6.61%). In contrast, the PLSR models for Ψ_{root} and Ψ_{soil}, developed from the sweet corn data set ($R^2 = 0.71$, RMSEP = 8.52%), exhibited reduced accuracy (Table 2 and Supporting Information S1: Figure 5). Furthermore, we applied the PLSR models for Ψ_{root}, developed from the sweet corn data set, including peanut, sweet corn and pooled species. The models performed less effectively on these data sets compared to the internal training/testing (Table 2 and Figure 6, $R^2 = 0.58$–0.77, RMSEP = 14.82%–17.89%).

The PLSR models based on root and soil spectral reflectance also performed well. The PLSR models for Ψ_{root} and Ψ_{soil} of individual species demonstrated high accuracy (Table 2 and Supporting Information S1: Figure 5, $R^2 = 0.78$–0.9, RMSEP = 6.59%–10.13%). When species were pooled, the PLSR models for Ψ_{root} maintained high accuracy (Table 2 and Supporting Information S1: Figure 5, $R^2 = 0.8$, RMSEP = 7.5%), while the PLSR models for Ψ_{soil} lost accuracy (Table 2 and Supporting Information S1: Figure 5, $R^2 = 0.57$, RMSEP = 10.89%). The application of PLSR models for Ψ_{root} and Ψ_{soil} to the corresponding independent data sets yielded mostly intermediate to high accuracy (Table 2 and Figure 6, $R^2 = 0.68$–0.91, RMSEP = 12.58%–17.71%).

3.5 Wavelength importance and similarities among plant organs and soil in visible and near-infrared range

The variable importance metric revealed broad similarities in the spectral regions (400–2400 nm) important for predicting leaf water status (Ψ_{leaf}, RWC and EWT) across all three data sets (Supporting Information S1: Figure 6). Important wavelengths were the green bands at 550 nm, the red edge at 720 nm, as well as peaks around 1500 and 1800 nm in the SWIR region. The SWIR range from 750 to 1400 nm generally had greater importance in predicting peanut water status compared to sweet corn and the combined species (Supporting Information S1: Figure 6). When predicting Ψ_{root} using the spectrum spanning from 450 to 900 nm, important wavelength ranges shared by all three data sets included peaks around 520 nm, the green bands at 550 nm, 630 nm, and the red edge spanning 670–720 nm.

The important wavelengths showed considerable variations when predicting peanut and sweet corn Ψ_{root} (Supporting Information S1: Figure 7). Wavelength bands in the 800–900 nm range were important for predicting peanut Ψ_{root}, while bands ranging from 450 to 625 nm were important for predicting sweet corn Ψ_{root}. Combining the peanut and sweet corn data sets, wavelength bands from 450 to 625 nm were important for predicting root water potential in both species. Important wavelengths for predicting peanut soil water potential included bands at 450, 520, and 575 nm, as well as several bands in the 680–900 nm range. For predicting sweet corn soil water potential, important wavelengths featured peaks at 520 nm and multiple peaks within the 680–900 nm range (Supporting Information S1: Figure 7). When combining the peanut and sweet corn data sets, important wavelengths for predicting soil water potential comprised peaks at 520, 580 and 740 nm (Supporting Information S1: Figure 7).

4 DISCUSSION

Our models were able to predict leaf, root and soil water status from spectral reflectance over a range of water stress intensities in two species representing different drought response strategies. Even though the soil water potential significantly declined in both species, the hydraulic disequilibrium between soil and plant in the case of sweet corn indicated that plant canopy spectra alone would be

TABLE 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Parameter</th>
<th>Internal training and testing</th>
<th>External validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Components Slope %RMSE Bias R^2 p Value</td>
<td>Slope %RMSE Bias R^2 p Value</td>
</tr>
<tr>
<td>Both species</td>
<td>Ψ_{leaf}</td>
<td>7 0.99 8.52 0.0012 0.71 <0.001</td>
<td>0.86 14.82 −0.139 0.59 <0.001</td>
</tr>
<tr>
<td></td>
<td>Ψ_{root}</td>
<td>6 0.94 10.89 −0.0086 0.67 <0.001</td>
<td>1.25 17.71 −0.3983 0.58 <0.001</td>
</tr>
<tr>
<td></td>
<td>Ψ_{soil}</td>
<td>8 0.97 7.5 0.0038 0.8 <0.001</td>
<td>1.26 12.58 −0.1272 0.81 <0.001</td>
</tr>
<tr>
<td>Sweet corn</td>
<td>Ψ_{leaf}</td>
<td>7 0.91 18.56 −0.0144 0.58 <0.001</td>
<td>0.83 17.89 −0.2549 0.5 <0.001</td>
</tr>
<tr>
<td></td>
<td>Ψ_{root}</td>
<td>7 1 8.6 0.0099 0.8 <0.001</td>
<td>0.89 14.69 −0.0072 0.84 <0.001</td>
</tr>
<tr>
<td></td>
<td>Ψ_{soil}</td>
<td>5 0.98 6.99 −0.0017 0.87 <0.001</td>
<td>0.82 13.57 −0.0968 0.91 <0.001</td>
</tr>
<tr>
<td>Peanut</td>
<td>Ψ_{leaf}</td>
<td>9 1.06 6.61 −0.0037 0.88 <0.001</td>
<td>1.2 16.11 −0.3427 0.77 <0.001</td>
</tr>
<tr>
<td></td>
<td>Ψ_{root}</td>
<td>4 0.99 10.13 −0.0061 0.78 <0.001</td>
<td>1.25 16.4 −0.2158 0.81 <0.001</td>
</tr>
<tr>
<td></td>
<td>Ψ_{soil}</td>
<td>6 0.99 6.59 0.0104 0.9 <0.001</td>
<td>1.14 14.45 −0.2879 0.86 <0.001</td>
</tr>
</tbody>
</table>

Abbreviations: VNIR, visible and near-infrared range; %RMSE, root mean square error divided by 95% of trait range; Ψ_{leaf}, leaf water potential; Ψ_{root}, root water potential; Ψ_{soil}, soil water potential.
insufficient to detect declining soil water status conditions in some species (Figure 7). Although we did not observe hydraulic segmentation between plant organs (Figure 4), it is important to acknowledge that if segmentation had happened via leaf or terminal branch shedding, it could influence the model’s capacity to detect belowground processes from aboveground organs. Specifically, predicted root water potentials would likely be significantly lower than the true root water potential. Thus, quantifying the fine-scale spatial distribution of root and soil water status in a nondestructive way will require spectral imagers deployed into the rhizosphere. While our approach provides insight into the potential of hyperspectral prediction of root and rhizosphere water status, important challenges

FIGURE 6 Plots of measured values against spectral reflectance (450–900 nm) predicted values using partial least square regression on external validation data sets for leaf water potential (ψ_{leaf}), root water potential (ψ_{root}) and soil water potential (ψ_{soil}) of pooled species (a–c), sweet corn (d–f) and peanut (g–i). Dark blue (red) points are from control (well-watered) plants, and light blue (red) points are from peanut (sweet corn) plants under drought treatment. The black line is the 1:1 line. The red line indicates the line of best fit using ordinary least squares for each panel. We applied models generated from 100 iterations during training and testing to the corresponding spectral reflectance to get the 95% confidence intervals of each point. [Color figure can be viewed at wileyonlinelibrary.com]
and next steps remain. Here, we outline potential scenarios where soil–plant hydraulic disequilibrium may occur and provide a roadmap for research in hyperspectral imaging of the plant rhizosphere.

Soil–plant disequilibrium can result from plant strategies to maintain hydration or from soil characteristics. Our rhizoboxes were relatively small in volume, relative to the soil volume that both peanut and sweet corn are known to occupy under field conditions. While box volume restricted root growth compared to field conditions, the volume (of box and soil) was carefully controlled so that these effects would be even across all plants, still allowing our study to quantify hyperspectral signals in the soil for the first time. Notably, we observed declines in plant and soil water potential similar to what has been observed in previously published field studies (Bennett et al., 1981; Xu, 2001). Species like sweet corn might disconnect from dry soils (Figure 4) through reductions in aquaporin expression, root shrinkage, root hair death, suberization of cortical cells, cortical lacunae formation and mucilage exudate formation (Carminati, 2012; Cuneo et al., 2016; Duddek et al., 2022; Shekoofa & Sinclair, 2018) to avoid low water potentials and lethal levels of embolism (Duddek et al., 2022; North & Nobel, 1997). These processes can severely increase the hydraulic resistance of roots making it account for >95% of the whole-plant hydraulic continuum resistance in moderately water-stressed plants (Rodriguez-Dominguez & Brodribb, 2020) and minimize soil–plant flows. As such, soil water may have an easier time travelling from the soil to the atmosphere via evaporation than through a plant that has increased the soil-to-plant hydraulic resistance in response to drought stress, leading to increasingly different soil and plant water potentials over time. Alternatively, soil–root disconnection might occur due to the shrinkage of soil (Affortit et al., 2024; Cai et al., 2022), a process typical of clay-rich soils. Hydraulically disconnecting roots from the soil during severe drought may offer advantages during prolonged drought as they create a longer ‘hydrated’ phase for plants (Mackay et al., 2015; Nobel & Cui, 1992), effectively extending the time to

FIGURE 7 Plots of spectral reflectance (400–2400) predicted leaf potential (Ψ_{leaf}) against measured and spectral reflectance (450–900) predicted soil (Ψ_{soil}) and root (Ψ_{root}) water potentials. Estimating Ψ_{soil} based on reflectance estimates of Ψ_{leaf} in species that disconnect from the soil will overestimate Ψ_{soil} (a). Only species that maintain hydraulic continuity with the soil under drought hold a 1:1 relationship between Ψ_{soil} and Ψ_{leaf} that enables the prediction of soil water deficit based on canopy spectral reflectance (a). The black line is the 1:1 line. [Color figure can be viewed at wileyonlinelibrary.com]
hydraulic failure (Hammond & Adams, 2019). However, this disconnection comes as a recovery cost—it requires time and energy for plants to restore physiological functions, as shown in the relatively slower sweet corn recovery of photosynthetic capacity (F_v/F_m), which took at least 2 days longer to recover than peanut after rehydration. In contrast, species like peanut which maintain hydraulic connections with the surrounding soil (Figure 4), risk exposure to lethal water potentials. Maintaining hydraulic connection with the soil during severe droughts could be advantageous during short droughts as physiological recovery might be quicker relative to species that experience disequilibrium. Maintaining hydraulic connection might also be beneficial in plants highly resistant to embolism formation (i.e., low P_{50}) as they would experience minimal impact on plant function. Thus, we expect that although it has never been measured, *Arachis hypogaea* L. may be highly resistant to hydraulic failure, allowing plants to avoid hydraulic dysfunction while providing a means of rapid recovery. Notably, published values of P_{50} for Zea mays P50 are $–1.2$ MPa (Gleason et al., 2017), indicating that our observation of disequilibrium may evidence a hydraulic dysfunction avoidance strategy. While leveraging plant canopies as signal transducers for belowground processes have been previously proposed (Bagherian et al., 2023; Ramírez et al., 2023), we urge caution as sensing of rhizosphere water status through canopy spectra should thus be constrained to those species and soil conditions known to favour hydraulic continuity under drought (Figure 7).

It is critically important to identify the most informative wavelengths to predict water status across the soil–plant–atmosphere continuum. Present technologies aimed at imaging the rhizosphere are limited to monochrome or RGB imagery (Johnson et al., 2001; Xu et al., 2022). Given the current size and working distance of hyperspectral imagers, deploying this technology below-ground in an unconstrained rooting zone is not yet possible. Thus, one of the most immediate future steps is identifying wavelengths suitable for the development of small, field-deployable multi- and hyperspectral imagers for further study of rhizosphere function (and dysfunction). In our study, we identified important wavelengths shared across models (Supporting Information S1: Figures 6 and 7: wavelengths 450–550, 650–750, 1500–1800 nm), while others appeared to be species-specific. Wavelengths at 500–550, 650–750 and 1500–1800 nm of the plant spectrum are associated with pigment content, stress conditions, photosynthetic activities and water content (Eitel et al., 2011; Ely et al., 2019; Peters & Noble, 2014). Their commonality across species and organs such as leaves and roots is thus expected due to their direct relationship to water status or to reduced pigment function caused by slow metabolism and increased oxidative stress when water is scarce. In the case of soil spectra, wavelengths 450–550 and 650–750 nm are associated with soil organic content (Conforti et al., 2018). In our case, specific wavelengths might be exclusive to our studied species or a feature of their differing drought response strategies. Exploring the extent to which wavelength importance may be associated with drought response strategy—as illustrated with peanut and sweet corn—should be a priority to resolve. Studies of buried rhizoboxes, and the development of small multispectral imagers capable of rhizosphere imaging, will help validate the use of these wavelengths and scale the approaches outlined here to less-restricted soil environments.

While we have revealed the potential for hyperspectral imaging to detect plant root and soil functional states, a diversity of other soil conditions needs to be similarly tested. The media used in our rhizoboxes (greens grade) was selected due to its homogeneity relative to most field soils. This simplification provided a more homogenous soil environment, with low organic matter and an even pore size. Our experiment’s simplified media allowed us to unveil the potential for spectral mapping of rhizosphere water status, but future research should seek to understand its efficacy in soil environments of increasing complexity. Complex soils are rich and diverse in chemistry and structure, and roots share space with other organisms such as mycorrhiza and microbial communities (Zhou et al., 2022). Soil chemistry and structure, mycorrhiza and microbes all interact with plant roots in processes of water uptake and retention (Sangwan & Prasanna, 2022). Each of these elements has its own spectral signature. Sensing the identity and function of mycorrhiza, soil microbial communities and their functions, and developing diagnostics for soil characteristics might be possible through imagers capable of rhizosphere mapping. From a plant physiology perspective, future studies may also wish to explore the degree to which hydraulic continuity and disequilibrium are strategies more or less associated with plant photosynthetic pathways (e.g., C3, C4 or crassulacean acid metabolism). Stressors in the soil are similarly diverse; here, we have shown the potential for monitoring soil and plant root responses to drought stress, yet inundation (Lagomasino et al., 2021), saltwater intrusion (Middleton & David, 2022) and freezing stress (Prerostova et al., 2021) all routinely impact the rhizosphere environment and deserve further study.

5 | CONCLUSION

Our study provides the first evidence of the potential for hyper- and multispectral approaches to quantify not just structure, but function, in the rhizosphere in a nondestructive manner. These nondestructive measures of plant and soil water status have numerous applications, especially at the root–soil interface. Future studies that follow similar approaches should use less constrained rooting environments, which could also enable real-time study of root architecture and development in response to water deficit. Our modelling approach paves the way for future research to quantify root water status at a spatial scale not previously not possible on intact plants. On our warming planet, plant water status is important for the many services that plants provide in natural and agricultural systems; being able to monitor these dynamic systems in a nondestructive way may provide numerous insights. Future work is needed to understand the additional rhizosphere processes to which our approach may be extended and the full potential of hyperspectral rhizosphere imaging for nondestructive detection of signals in the soil.
ACKNOWLEDGEMENTS
This research was supported by the US Department of Agriculture, National Institute of Food and Agriculture, Soil Health programme under accession no. 1024671. Funding was also provided by the Southeastern Peanut Research Initiative and Florida Peanut Producers Association.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Yangyang Song http://orcid.org/0000-0002-4385-4538

REFERENCES

Earth & Environment, 3(5), 1-15. Available from: https://doi.org/10.1038/s43017-022-00272-1

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Song, Y., Sapes, G., Chang, S., Chowdhry, R., Mejia, T., Hampton, A. et al. (2024) Hyperspectral signals in the soil: Plant-soil hydraulic connection and disequilibrium as mechanisms of drought tolerance and rapid recovery. *Plant, Cell & Environment*, 1–17. https://doi.org/10.1111/pce.15011