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Figure 1: Based on the analysis of a view-parameterized light field, a passive, monocular sensor could instantaneously
measure distances and velocities of objects from image derivatives in a window, even under extreme power constraints.

Abstract
We present an opportunity for the visual sensing of depth

and 3D velocity using a passive sensor that has extremely
low power requirements. This opportunity comes from a
new mathematical constraint, which we derive, that relates
depth and velocity to spatial and temporal derivatives of
image values captured by a coded-aperture camera that ob-
serves a moving scene. The constraint exploits the fact that
there are two causes of brightness change in this situation:
features move across the image due to motion, and contrast
changes because of time-varying optical blur. The sensor
that could be realized from this constraint is called a focal
flow sensor. We analytically characterize the working vol-
ume of such a sensor in relation to its size, and we provide
simulation results that affirm its viability.

1. Extreme Power Constraints
The miniaturization of technology is constantly advanc-

ing, and platforms such as tiny air vehicles increasingly
demand visual sensors that operate on smaller scales and
with less power than current technology can achieve [1, 6].
One way to reduce power requirements in these situations is
through computational sensing, where optics and inference
algorithms are co-designed in ways that lessen the complex-
ity of post-capture calculations. This paper presents mathe-

matical analysis that suggests a new type of computational
sensor, one that measures distance to visible surfaces and
3D velocity relative to those surfaces. This could provide a
low-power alternative to existing, high-power depth sensors
that either require an active light source (e.g. time-of-flight)
or substantial post-capture computation to solve a complex
inference problem (e.g. stereo, depth from defocus).

The cues studied here are motion and defocus. Deriving
depth from either of these signals independently can be ex-
pensive or unreliable, but their weaknesses can be mitigated
through a novel cue combination mechanism. Our contribu-
tion is the derivation of a per-pixel constraint,[

Iy Ix xIx + yIy Ixx + Iyy
]
· ~v + It ≈ 0,

which holds when the aperture of a moving camera is
equipped with an apodizing filter that has a narrow Gaus-
sian profile. Over an image patch, depth and velocity are
recovered simply by taking spatial and temporal deriva-
tives, and solving a 4 × 4 linear system for coefficients
~v = (v0, v1, v2, v3). Scene parameters are then computed
from these coefficients in closed form using known intrinsic
camera parameters such as aperture size and focal length.

The proposed sensor can be understood as an optical
flow sensor with defocus. Traditional optical flow, where
all images are in focus, is computable from a linear system
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of equations on image derivatives in a receptive field [7].
This locally resolves time-to-contact [5], but it cannot in-
stantaneously give explicit local distance and velocity. We
show that when the camera is defocused and equipped with
an appropriate aperture function, a similarly simple calcu-
lation provides explicit depth and velocity. The derivations
of our results appear in the supplemental material, and they
will be published at a later time.

2. View-Parameterized Light Field
We derive our constraint using a light field representa-

tion [2, 11], which has successfully been used to analyze a
variety of computational cameras [9, 10]. For clarity, we
present in two dimensions (flatland), where there is a 2D
space of light rays and a 1D image domain. As is com-
mon, we parameterize light rays by their intersections with
two parallel reference lines, but less common, we affix the
reference lines to the moving sensor. This makes a view-
parameterized light field. The references are parallel to the
photodetector line and located at the lens center and object-
side focal point, all of which are determined by the sensor’s
internal geometry and assumed known (middle of Figure 1).

We assume that locally the scene is fronto-parallel and
of matte reflectance, as shown in Figure 1. There are four
parallel lines of interest in the figure center: the local world
line parameterized by s, the photodetector (image) line pa-
rameterized by x, the first reference line at the lens cen-
ter parameterized by a, and the second reference line at the
object-side focal point parameterized by b. We use the word
texture for the radiance at the world line and denote it T (s),
and we assume that it is at least twice differentiable.

The axial distances from the lens center to the sensor
(µs) and focal point (µf ) are known quantities determined
by the sensor’s construction, while the distance to the world
plane, or depth, (Z) is to be measured. The origins of the
lens, focal, and sensor lines are at their intersection with
the optical axis. The world line has its own origin, so its
intersection with the optical axis is at world point s − X ,
with X the (unknown) time-varying lateral position of the
sensor. Our aim is to recover the depth Z and the sensor
velocity (Ẋ, Ż) from image measurements, and to do so in
a way that is invariant to the unknown texture T (s).

Each texture point induces a ray in the light field, and
the slope of these rays encodes depth. The light rays ro-
tate about their intersection with the line a = b in response
to axial motion Ż, and in response to transverse motion Ẋ
they translate along the line a = b. We are interested in the
radiance L(a, b) of the light ray that corresponds to a fixed
world point. This world point projects to a time-varying im-
age location x(t), and its radiance is determined by where
it intersects the texture plane:

L(a,b,T,X,Z) =T (s(a,b(x(t)),X(t),Z(t)). (1)

Figure 2: Time-varying images of a 1D front-parallel tex-
ture with a sinusoidal radiance pattern. Left: In the all-in-
focus case, there is no contrast loss, and the image P (x, t)
changes only in frequency and phase. Right: A finite aper-
ture incurs optical blur, and now the contrast of image
I(x, t) also changes over time, allowing explicit recovery
of depth and velocity without knowledge of texture.

3. Conventional All-in-Focus Constraint
Before proceeding to the focal flow constraint, it is worth

understanding how the classical linearized optical flow (or
constant brightness) equation [5] can be derived in this light
field framework. At time t, the all-in-focus (pinhole) image
P (x, t) corresponds to a slice through the light field along
line a = 0:

P (x(t), t) =L(0, b(x(t)), T,X(t), Z(t)). (2)

As the sensor moves through a static scene, the effective
light field skews, and the image changes. The left of Fig-
ure 2 is an example where the texture T (s) is sinusoidal and
the velocity is zero in X and constant in Z. Because there
is no optical blur, there is no loss of contrast over time, and
the imaged sinusoid changes only in frequency and phase.

The linearized optical flow constraint follows directly
from taking the total time derivative of Eq. 2 and noting
that, because of the fixed contrast, dP/dt = 0. Alterna-
tively, the partial image derivatives can be rearranged in the
form of a related linear constraint on time-to-contact (Z/Ż)
and bearing (Ż/Ẋ):[

Px xPx
]
·
[
v1 v2

]
+ Pt = 0, (3)

time-to-contact: 1/v2 (4)
bearing: − µsv2/v1. (5)

Our derivation follows directly from the differentiability of
the texture T (s) and light field L(a, b(t)). It is an alter-
native to previous derivations based on a truncated Taylor
expansion of the image [3].

The linear constraint of Eq. 3 holds at every pixel, so im-
age derivatives from a small (non-degenerate) image patch
can be accumulated into a simple 2 × 2 linear system that
uniquely determines bearing and time-to-contact. However,
there is not enough information to resolve this into explicit
depth and velocity.
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4. Focal Flow Constraint
The view-parameterized light field makes it easy to add

an aperture. We give our sensor a finite aperture that passes
all rays through a ∈ [−A/2, A/2], and in the spirit of coded
aperture cameras [8, 12, 13] we include an attenuating trans-
mittance function k(a). In this case, the (possibly defo-
cused) image is

I(x(t), t) =

∫ A/2

−A/2
L(a, b(x(t)), T,X(t), Z(t))k(a)da.

(6)

As depicted in the right of Figure 1, at each pixel x this
is a vertical line integral of the light field, weighted by the
aperture function.

Now, when the sensor moves, changes in optical blur re-
sult in changing image contrast over time. The right of Fig-
ure 2 shows this effect for the special case of a sinusoidal
texture pattern. It is this change in contrast, which comes
in addition to the changes in frequency and phase, that pro-
vides additional information to resolve time-to-contact and
bearing into explicit depth Z and velocity (Ẋ, Ż).

Note that unlike the pinhole case, the total time deriva-
tive of Eq. 6 is not zero. Instead, it takes on a value
dI
dt = E(T ) that depends on the unknown texture pattern
T . However, it can be shown that for a suitable choice of
the aperture function k(a) this ‘error term’ is directly pro-
portional to a very measurable quantity: the second spatial
derivative of the image,E(T ) ∝ Ixx. The required function
is a truncated Gaussian,

k(a) =

{
e−

a2

2Σ2 , |a| ≤ A/2
0 , |a| > A/2

, (7)

whose width is sufficiently narrow with respect to the aper-
ture (say, Σ < A/6).

The ratio between the image derivative Ixx and error
term E contains depth and velocity information and can be
estimated from the image alone, and this leads to the follow-
ing texture-independent constraint on depth and velocity.[

Ix xIx Ixx
]
·
[
v1 v2 v3

]
+ It = 0, (8)

Z =
µ2
sΣ

2v2

µ2
sΣ

2v2/µf − µfv3
(9)

Ż =− Zv2 (10)

Ẋ =Zv1/µs (11)

This per-pixel linear constraint can be applied to a small
image patch for power-efficient estimates of depth and ve-
locity. The analogous constraint on two-dimensional tex-
tures that is shown in the introduction follows immediately
from the separability of the Gaussian aperture. In this case,
the other component of lateral velocity is Ẏ = Zv0/µs.

5. Working Range
There are many algorithmic choices for a sensor using

our constraint, such as the scale of image derivatives and
the grouping of pixels into appropriate patches. These are
longstanding questions in optical flow and time to contact
[4, 5] and instead of addressing them here we study the un-
derlying sensitivity of the system by considering observa-
tions of a sinusoidal texture. From these idealized images
we can derive bounds on depth error for sensors that vary
in aperture size and other physical dimensions, and we can
visualize how working range relates to sensor size.

When a moving camera observes a sinusoidal texture it
obtains sinusoidal images with frequencies ω(t) and am-
plitudes B(t). In this context, we can analytically derive
an upper bound on depth error by propagation of errors in
measured frequency (e.g. due to spatial resolution) and of
errors in measured amplitude (e.g. due to bit-depth and sen-
sor noise). If image frequencies and their changes are mea-
sured with error less than εω and εω̇ , and image brightnesses
and their changes within εB and εḂ , respectively, then the
error in estimated depth εZ is bounded as:

εZ ≤

√(
∂Z

∂ω

)2

ε2ω+

(
∂Z

∂ω̇

)2

εω̇2+

(
∂Z

∂B

)2

ε2B+

(
∂Z

∂Ḃ

)2

ε2
Ḃ

=
Z

µf
(Z−µf )

√
ε2ω
ω2

+
ε2ω̇
ω̇2

+
ε2B
B2

+
ε2
Ḃ

Ḃ2
.

(12)

This error bound is shown in the left of Figure 3 for
sensors with the same aperture size but different distances
µs. For each sensor we plot the bounded errors for textures
located at distances Z within a 20cm window around the
object-side focal point. These graphs agree with the intu-
ition that the strength of the blur cue diminishes when the
texture moves too far from the focal point (recall the right of
Figure 2). The spike in the error bound at the focal point µf
is caused by the 1/Ḃ term in expression (12), and it reveals
the limitations of a first-order propagation-of-errors: in sim-
ulations of actual depth reconstructions, we do not see such
errors near the focal point. Note that the appearance of both
frequency and brightness error terms in expression (12) re-
veals a trade-off between spatial resolution and bit-depth.
For a desired level of depth accuracy, a camera with high
bit-depth (low εB and εḂ) or high pixel density (low εω and
εω̇) could make up for deficiencies in the other.

One can draw similar error graphs for different aperture
sizesA, and for each combination of µs andA we can com-
pute an ε-working range, defined as the range of positions
Z for which the sensor’s depth error is guaranteed to be
less than ε. The right of Figure 3 shows one such graph for
ε = 0.25cm. This visualization can be used to identify op-
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timal combinations of sensor length and width (µs and A)
in the face of constraints on fixed total area µs ×A.

We also verify the viability of this sensing method by
simulating noisy images of sinusoidal plaid textures, ap-
proximating derivatives by finite differences, accumulating
per-pixel constraints over a 50×50 window, and recovering
depth using Eq. 9. We do this for sensors of various dimen-
sions, with texture frequencies adjusted so that every sensor
captures the same image when the world plane is at its fo-
cal point. Figure 4 shows such distance estimates averaged
over 50 trials, for sensors having the same aperture size but
different lengths µs. Accuracy is higher near each sensor’s
focal point and degrades gradually over its working range.
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Figure 3: An exploration of noise sensitivity with εB =
εḂ/2 = εω = εω̇/2 = .05, ḋo = 1, and µf = 5µs, with
a sinusoidal texture of unit frequency in world coordinates.
Left: for A = 3, distance error εZ is shown over µs as a
function of distance, shifted to align each camera’s focal
point. Dotted line at 0.25cm marks threshold defining the
0.25-working range. Right: 0.25-working range for varying
camera dimensions. In white are level curves of camera area
A× µs, increasing by 4cm2 from bottom left.
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Figure 4: Simulated cameras of different size (A = 3 cm,
Σ = A/6 for all) show working ranges of varying size and
location. Near each camera’s focal distance, indicated by a
dashed vertical line of corresponding color, measurements
closely match ground truth.

6. Toward a Focal Flow Camera
To realize a focal flow sensor, we are currently explor-

ing robust estimation techniques that compute derivatives at
multiple spatial scales and that automatically discard image
windows that to not contain sufficient brightness variation
or do not back-project to fronto-planar scene planes. We
are also testing physical prototypes and exploring the math-
ematical space of apodizing functions that provide texture-
invariance in ways similar to the truncated Gaussian. More
generally, we believe that the view-parameterized light field
may be useful in modeling and designing other computa-
tional sensors that exploit various optical cues.
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Appendices
A. Constraint for Conventional Sensor

We assume a pinhole camera images a 1-D Lambertian
fronto-parallel planar object at distance Z(t) with unchang-
ing texture T (s).

Because the pinhole camera captures images that are
in focus everywhere, it does not have a well-defined focal
plane. To parametrize L as discussed previously we fix an
arbitrary plane parallel to the sensor and take µf to be its
constant distance from the pinhole.

Letting x(t) refer to the changing image location corre-
sponding to a fixed world point, we see from similar trian-
gles that

b(x(t)) =− µf
µs
x(t). (13)

Finding the slopem of the line generated in the light field
by this point can be found by requiring a single ray of light
to pass through scene points (a, 0), (s−X(t), Z(t)), and
(b, µf ). Requiring the physical slopes between these points
to be equal characterizes the resulting line in the light field:

a =m(t)b(x(t)) + (1−m(t))(s−X(t)), (14)

m(t) =
Z(t)

Z(t)− µf
. (15)

From equation (14), note the following expression for
texture parameter s.

s(a, b,m(t), X(t)) =
a−m(t)b(x(t))

1−m(t)
+X(t) (16)

We can now express the light field as a function not only
of a and b but also of a specific texture and scene geometry,
as below.

L(a, b, T,m(t), X(t)) = T (s(a, b,m(t), X(t))) (17)

A pinhole camera blocks all light that does not pass
through a = 0, so it samples an image along the a axis
of the light field as in equation (2).

We examine the total time derivative of the image under
the assumption of unchanging texture:

dP

dt
=
∂P

∂x

dx

dt
+
∂P

∂t
(18)

=
dL

dt
=
dT

dt
= 0. (19)

A closer look at the time derivative of the texture T
produces an expression that depends explicitly on texture
and scene geometry. Equations (14) through (16) and (13),

along with their derivatives, are used between lines 2 and 5
below.

dT

dt
=
d

dt
T (s(0, b(x(t)),m(t), X(t))) (20)

=
∂T

∂s

(
∂s

∂b

db

dx

dx

dt
+

∂s

∂m

dm

dt
+

∂s

∂X

dX

dt

)
(21)

=
∂T

∂s

(
−m

1−m
−µf
µs

dx

dt
+

(a− b)
(1−m)2

−µf Ż
(Z − µf )2

+
dX

dt

)
(22)

=
∂T

∂s

(
Z

−µs
dx

dt
+

(0 + xµf/µs)

µ2
f/(Z − µf )2

−µf Ż
(Z − µf )2

+
dX

dt

)
(23)

=

(
∂T

∂s

Z

−µs

)
dx

dt
+

(
∂T

∂s

)(
x

−µs
dZ

dt
+
dX

dt

)
(24)

Comparing expression (24) to equation (18) gives an ex-
plicit form for image derivatives.

∂P

∂x
=

(
∂T

∂s

)
Z

−µs
(25)

∂P

∂t
=

(
∂T

∂s

)(
x

−µs
dZ

dt
+
dX

dt

)
(26)

Note that the ratio of ∂P
∂x and ∂P

∂t is independent of tex-
ture and contains only information about known pixel loca-
tion x and camera size µs and unknown depthZ and camera
velocity (dXdt ,

dZ
dt ). This allows us to separate equations (25)

and (26) into image and scene information and rewrite them
in the form seen in equation (3), with texture-independent
coefficients v1 and v2.

v1 =µs
Ẋ

Z
(27)

v2 =− Ż

Z
(28)

These coefficient contain the information needed to calcu-
late time-to-contact and direction of travel. Methods for
computing these quantities robustly from image data are a
topic of ongoing research [4]. Our primary contribution lies
in the comparison between these equations (3-5) and the
analogous expressions (8-11) for the blurred case, shown
below.

B. Constraint for Focal Flow Sensor
We now assume a camera with an ideal thin lens and

coded aperture images the 1-D Lambertian fronto-parallel
planar object at distance Z(t) with unchanging texture
T (s).
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Replacing the pinhole with a lens means that at each
pixel the camera integrates over a line of a values rather
than taking an infinitesimally thin sample of the light field.
When an object is not in focus, texture lines in the light field
have a nonzero slope and this integration results in blur,
leading to an error term in the optical flow equation. The
essential mathematical difference is that the a term in equa-
tion (22) no longer disappears. We show that with a coded
aperture of Gaussian transmittance, this error term can be
used as data that enables direct measurement of depth and
camera velocity, as shown below.

For a lens centered at a = 0 of aperture size A and aper-
ture function k(a), the image is formed by the weighted in-
tegration of the light passing through the lens to reach each
pixel, as in equation (6). At this point we make no assump-
tions about k(a), though in a standard lens it would be a box
function in the shape of the aperture. Note that if we were
to express k in terms of x it would vary based on depth,
but in light field coordinates it remains fixed and depth de-
pendence operates through the changing slope of the texture
lines.

Because each image is blurred, intensity changes now re-
sult from both feature motion and changes in defocus level,
so the unchanging-texture constraint no longer guarantees
an unchanging image and dI

dt is not identically zero. Instead,
we propose a modification to the optical flow equation for
cameras with significant apertures. This change is speci-
fied by the total time derivative of the light field integral in
equation (6), explored below.

dI

dt
=
d

dt

∫ A/2

−A/2
L(a, b(x(t)), T (s),m(t), X(t))k(a)da

(29)

=

∫ A/2

−A/2

(
∂L

∂b

db

dx

dx

dt
+
∂L

∂m

dm

dt
+
∂L

∂X

dX

dt

)
k(a)da

(30)

=

(∫ A/2

−A/2

∂L

∂b

db

dx
k(a)da

)
dx

dt
+

∫ A/2

−A/2

(
∂L

∂m

dm

dt
+
∂L

∂X

dX

dt

)
k(a)da

(31)

As before, comparing expressions (18) and (31) reveals
the form of image derivatives, while equations (14) through
(16), (13), and their derivatives give their explicit values.

∂I

∂x
=

∫ A/2

−A/2

∂L

∂b

db

dx
k(a)da (32)

=
Z

−µs

∫ A/2

−A/2
k(a)

∂T

∂s
da (33)

∂I

∂t
=

∫ A/2

−A/2

(
∂L

∂m

dm

dt
+
∂L

∂X

dX

dt

)
k(a)da (34)

=

(
Ż

−µs
x+ Ẋ

)∫ A/2

−A/2
k(a)

∂T

∂s
da

+− Ż

µf

∫ A/2

−A/2
ak(a)

∂T

∂s
da

(35)

As aperture size A approaches zero, these match equa-
tions (25) and (26) found in the blur-free case. The second
term in ∂I

∂t , however, is significant because unlike equations
(25) and (26), the ratio of (34) and (35) is not independent of
texture and so cannot be used in traditional calculations for
time-to-contact and camera direction without introducing a
texture-dependent, blur-induced error term.

We now consider the case that the aperture function is a
narrow truncated Gaussian. This can be accomplished with
the addition of a mask whose transmittance along a obeys
the equation (7). With this filter, the second term in equation
(35), which we will call E, can be analyzed. We break it
into two terms, one from the Gaussian term and one from
the truncation.

E =− Ż

µf

∫ A/2

−A/2
ak(a)

∂T

∂s
da (36)

=E0 + E1, (37)

E0 =− Ż

µf

∫ ∞
−∞

ak(a)
∂T

∂s
da, (38)

E1 =
Ż

µf

∫ −A/2
−∞

ak(a)
∂T

∂s
da

+
Ż

µf

∫ ∞
A/2

ak(a)
∂T

∂s
da.

(39)

The second term, E1, is a correction term that distin-
guishes our case from an aperture of infinite extent. This
should almost always be negligible for a narrow Gaussian.
For instance, if Σ = A/6 then the regions included in E1

contains less than 2% of the total weight of ak(a). For even
the most pathological textures, only a very small number of
pixels could produce a value for E1 on the order of E0.

The first termE0 can be expanded as follows with partial
integration. Note that ∂a∂s = (1 −m) by equation (14) and
that for Gaussian k(a) = e−a

2/2Σ2

, dkda = − a
Σ2 k(a).

E0 =− Ż

µf

∫ ∞
−∞

ak(a)
∂T

∂s
da (40)

=− Ż

µf

∫ ∞
−∞

(
−Σ2 ∂k

∂a

)(
∂T

∂a

∂a

∂s

)
da (41)

=− Ż

µf
Σ2(m− 1)

∫ ∞
−∞

∂k

∂a

∂T

∂a
da (42)
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=− Ż

µf
Σ2(m− 1)([

k(a)
∂T

∂a

]∞
−∞
−
∫ ∞
−∞

k(a)
∂2T

∂a2
da

) (43)

=0 +
Ż

µf
Σ2(m− 1)

∫ ∞
−∞

k(a)
∂2T

∂a2
da. (44)

(45)

This term can be expressed in terms of the second texture
derivative and a new camera constant cE .

cE =

(
µsΣ

µf

)2

(46)

E0 =− Ż

µf

Σ2

m− 1

∫ ∞
−∞

k(a)
∂2T

∂s2
da (47)

=
ŻZcE
µ2
sm

∫ ∞
−∞

k(a)
∂2T

∂s2
da (48)

This weighted, blurred second derivative of the texture is
a quantity that we can easily connect to the second spatial
derivative of the captured image. Note that the first line
below is from equation (34) and the derivatives in line 2 are
replaced by their values specified by equations (16) and (13)
in line 3.

∂2I

∂x2
=
∂

∂x

(
Z

−µs

∫ A/2

−A/2
k(a)

∂T

∂s
da

)
(49)

=
Z

−µs

∫ A/2

−A/2
k(a)

(
∂b

∂x

∂s

∂b

∂

∂s

)
∂T

∂s
da (50)

=

(
Z

−µs

)2 ∫ A/2

−A/2
k(a)

∂2T

∂s2
da (51)

=
Z

Ż

m

cE
E0 + E2, (52)

E2 =− Z

Ż

m

cE

∫ −A/2
−∞

k(a)
∂2T

∂s2
da

− Z

Ż

m

cE

∫ ∞
A/2

k(a)
∂2T

∂s2
da.

(53)

The coefficient on E0 in the expression above is −v3

as referenced in equation (8). Again, we can reasonably
expect the error term E2 to be negligible compared to E0.
The governing equation for the blurred case now takes the
following form:

v1Ix + v2xIx + It =− v3Ixx + E1 + E2, (54)

v3 =− Ż

Z

µ2
sΣ

2

µ2
fm

. (55)

When the filter is narrow so that E1 and E2 can be
taken to vanish, equation (54) reduces to the relationship

among measurable image quantities and scene unknowns
stated in equation (8). In addition to v1 and v2 defined
in equations (27) and (28), we have introduced the new
texture-free, scene-dependent coefficient v3. Because the
ratio v3/v2 = cE/m isolates the depth-dependent light field
slope m, this third scene coefficient provides a depth mea-
surement. This leads to solutions to all scene geometry un-
knowns, shown in equations (9)-(11).

Compare this to the equation (3) in the unblurred case,
which contains only v1 and v2. These quantities contain so-
lutions for camera motion direction and time-to-contact, but
without the blur-induced term v3 the complete scene param-
eters cannot be deduced from image information.

B.1. 2D Focal Flow Constraint

In two dimensions, we begin with the requirement
that a single ray passes through points (ax, ay, 0),
(sx −X, sy − Y, Z), and (bx, by, µf ), which leads to the
equations below. Note that, from the fronto-parallel planar
assumption, m(t) does not vary along x or y. All limits of
integration are −A/2 to A/2. The filter is assumed narrow
so that the error terms mirroring those in expression (54) are
taken to be zero.

T (sx, sy) =L(ax, ay, bx, by, T,m(t), X(t), Y (t))

(56)

sx =
ax −m(t)bx

1−m(t)
+X(t) (57)

sy =
ay −m(t)by

1−m(t)
+ Y (t) (58)

K =
1

2πΣ2
e−

a2
x+a2

y

2Σ2 = k(ax)k(ay) (59)

I(x(t), y(t), t) =
x

LKdaxday (60)

∂I

∂x
=

Z

−µs

x ∂T

∂sx
k(ax)k(ay)daxday (61)

∂I

∂y
=

Z

−µs

x ∂T

∂sy
k(ax)k(ay)daxday (62)

∂I

∂t
=

(
Ż

−µs
x+ Ẋ

)
Jx +

(
Ż

−µs
y + Ẏ

)
Jy+

ṁ

(m− 1)2

(x ∂T

∂sx
axKdaxday

+
x ∂T

∂sy
ayKdaxday

)
,

(63)

Jx =
−µs
Z

∂I

∂x
, Jy =

−µs
Z

∂I

∂y
(64)
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Because the aperture function is separable, as noted in
equation (59), the final terms in ∂I

∂t can be resolved as be-
fore.

Ż

µf

x ∂T

∂sx
axK =

Ż

µf

∫ [∫
∂T

∂sx
axk(ax)dax

]
k(ay)day

(65)

=
Ż

µf

∫ [
Σ2

m− 1

∫
k(ax)

∂2T

∂s2
x

]
k(ay)day

(66)

=
Ż

µf

Σ2

m− 1

x ∂2T

∂s2
x

Kdaxday (67)

=
ŻcE
Zm

∂2I

∂x2
(68)

This leads to the following alteration of equation (8) to
account for the additional spatial dimension.

∂I

∂t
=
Żx− Ẋµs

Z

∂I

∂x
+
Ży − Ẏ µs

Z

∂I

∂y
+
Ż

Z

cE
m

(
∂2I

∂x2
+
∂2I

∂y2

)
(69)

Equations (9)-(11) can be applied to these coefficients
as before, with (11) using v0 for Ẋ and v1 for Ẏ , for a
complete solution of scene geometry. This is, again, in con-
trast with everywhere-in-focus images, which allow access
to only v0, v1, and v2.

C. Sensitivity - Depth from Sinusoidal Texture
We consider a sinusoidal texture of amplitude B0, fre-

quency f0, and phase φ0. A pinhole camera captures the
in-focus image volume Q as below.

Q(x(t), t) = B0 sin(2πf0[−Zx/µs +X] + φ0) (70)

We can express this equation in terms of image fre-
quency ω(t) and phase φ(t).

Q(x(t), t) =B0 sin(ω(t)x+ φ(t)), (71)
ω(t) =− 2πf0Z/µs, (72)
φ(t) =2πf0X + φ0. (73)

As before, we consider blurring the image by introduc-
ing an aperture with function k(a) that induces an on-image
blur kernel h(x, t). We consider a narrow Gaussian function
with standard deviation Σ. This induces an on-image Gaus-
sian blur with standard deviation σ(t), as below.

h(x, t) =

∫∞
−∞ e−a

2/2Σ2

da∫∞
−∞ e−x2/2σ2dx

e
− x2

2σ(t)2 (74)

=
Σ

|σ(t)|
e
− x2

2σ(t)2 , (75)

σ(t) =

∣∣∣∣ 1

Z(t)
− 1

µf

∣∣∣∣µsΣ. (76)

Because the Gaussian is a symmetric kernel, blurring
with it changes only the contrast of the single sinusoid,
which takes the value of the max-aligned integral. By the
narrowness assumption, we ignore the subtractive correc-
tion to the Gaussian as before.

B(t) =

∫
Σ

σ
e−

x2

2σ2 B0 cos(ω(t)x)dx (77)

=B0Σe−
σ2ω2

2 (78)

Then, the blurred image volume is described by the equa-
tion below.

J(x(t), t) =B(t) sin(ω(t)x+ φ(t)) (79)

The changing amplitude B(t) of blurred image J en-
codes depth as follows. A good deal of arithmetic has been
omitted, and the camera constant cE defined in equation
(46) is used.

Ḃ =B0Σ(−σσ̇ω2 − σ2ωω̇)e−
σ2ω2

2 (80)

=(−σσ̇ω2 − σ2ωω̇)B, (81)

− Ḃ

Bωω̇
=
σσ̇ω

ω̇
+ σ2 (82)

=cE
Z − µf
Z

, (83)

Z =
µfcEBωω̇

Ḃ + cEBωω̇
. (84)

Derivatives of the equation above lead to the propagation
of error bound in the main text.
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