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Abstract—Finding and tracking radioactive sources has numer-
ous security applications in civilian energy installations, military
facilities and ports of entry. The price of radiological sensors
varies proportionally to size and imaging characteristics such as
angular resolution, and the cheapest devices are nearly isotropic -
i.e. they integrate radiation from a sphere of directions centered
at the sensor. While many radiation sensors have high aspect
rations or odd shapes, the sensors used here are right cylinders,
with near identical directional efficiency such that for analysis
purposes, other aspects such as counting statistics would make
non-isotropy of the sensor negligible. In this paper, we propose
a simple and robust way to integrate measurements from both
isotropic radiological sensors and depth sensors, whose reliability
and resolution benefit from recent advances in computer vision
and imaging. Our key idea is to convert all sensor measurements
into proximity signals based on radial distance variations over
time. Based on this sensor fusion model, we show that for moving
radiological sources even a simple Kalman filter can trade-off
the complementary strength of high-resolution depth sensors
and isotropic radiological sensors. We show novel results with
a LIDAR sensor and a thermal stereo pair, and demonstrate
applications such as tracking and rendering non-line-of-sight
imagery behind obstacles and detecting multiple radiological
sources in the same scene.

I. INTRODUCTION

Nuclear material trafficking at national ports of entry is a
major security risk. Trafficked nuclear material can be used to
inflict harm on people as a radiation dispersal device (RDD) or
nuclear weapon. Even if no such attack occurs, the contraband
material exposes those nearby to high radiation dosage [1].
Less than 1 liter of special nuclear material (SNM) is required
to create a nuclear weapon, and is easily stored on a person
or in their luggage. Nuclear material trafficking is not an
issue of the past; 2500 incidents of reported nuclear material
trafficking are recorded in the International Atomic Energy
Agency (IAEA) incident and trafficking database [2], since
the creation of the organization in 1957.

Radiation detectors are used to measure the neutrons,
gamma-ray photons and other nuclear radiation emitted by
trafficked material. High-end detectors can differentiate be-
tween multiple sources, and detect the direction from the
detector to the source. However, these high-end detectors are
expensive, a single detector can cost over $100,000. There
are detectors in the $1,000-$5,000 range with spectroscopic
capabilities but without directional imaging capabilities, these
are problematic because of they lack the acuity to spatially
differentiate between multiple sources and cannot determine
source direction, unless leveraging shielding or multiple de-
tectors.

Sensor researchers have tried to use inexpensive detectors
with depth-based vision sensors, in order to reduce costs and
exploit relatively mature vision capabilities such as detection
and tracking in simple environments. Such systems fuse data
across multiple sensors and include techniques such as satellite
imagery and laser mapping [3]–[7]. The main technique has
been to increase angular resolution by using an array of
isotropic radiation detectors with a coded aperture (made
of gamma-ray or neutron attenuating slabs). However, this
increases the cost of the system dramatically ≈ $100, 000
and requires additional calibration. Both of these reasons
prohibit such systems from being deployed to monitor large
areas. The coded aperture needs to be applied to each of the
sensors to encode directionality. To monitor a large area, a
larger number of detector systems must be deployed, which
would be very expensive. In addition, each detector must
be extensively calibrated and this will take a large amount
of time. On the other hand, reducing the number of sensor
nodes in these systems increases the chances of occlusion,
especially in crowded and visually cluttered environments such
as airports and ports. This paper is about robust, reliable and
inexpensive strategies for fusion between depth sensors and
a small number of cheap individual radiological sensors. The
data fusion described can make use of separate gamma-ray and
neutron data streams (if the detector utilized has pulse shape
discriminating (PSD) capabilities), or as mostly shown in the
paper here [8], combined neutron and gamma-ray detection
data, which would be the only data stream available for non-
PSD capable fast neutron detectors.

Stationary Sources: There are also ways to locate station-
ary sources when having many suitably located stationary or
mobile radiation sensors, however that scenario is not one we
are exploring here, focusing on the data fusion with vision
sensors and dynamic environments which is a very different
scenario [9].

A. Fusion with Radial Trajectories

We have recently attacked this problem by abstracting
both vision and radiological sensor measurements into sim-
ple, 1D radial trajectories based on the proximity of the
object of interest to the sensor [10], [11]. For depth-based
vision sensors, if there are I moving objects in a scene over
time, the ith moving object is represented as Rivision(t) =√
X2
i (t) + Y 2

i (t) + Z2
i (t), where (X(t), Y (t), Z(t)) is some

measure of overall location of this object, such as the centroid.
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For a radiological sensor detecting a single source in the scene,
Rsensor(t) ∝ 1√

count rate(t)
where count rate(t) is the radi-

ation counts measured over time. The sensor fusion problem is
therefore simplified into a 1D signal matching/decomposition
problem for Rivision(t) and Rsensor(t) across objects i and
time t.

In contrast to [10] where calibration of the system was
the goal, here we focus on sensor fusion complications that
occur when there are multiple sources, occlusions and noise
in the data, and address both passive and active depth sensors.
This paper extends our previous work [11], and we show new
results on non-laboratory weapon-grade radiological sources,
introduce new computational imaging algorithms to render
non-line-of-sight (NLOS) imagery, add noise analysis to illus-
trate our dependence on radiological counts and demonstrate
the applicability of our methods on both a passive, thermal
stereo pair and an active LIDAR system.

B. Context and Contributions

Sensor fusion between radiological and depth sensors is a
worthwhile goal since they have complementary strengths. The
radiological sensors, despite being isotropic to minimize cost,
have the advantage of potentially tracking sources through
visual obstacles such as walls. The depth sensors, while requir-
ing line-of-sight (LOS), have higher angular resolution. For
example, many commercial LIDAR systems have 360◦ field
of view (FOV) that enables easy calibration. Further, the novel
passive thermal stereo pair that we introduce in this paper
has the advantages of people tracking in visually degraded
environments that might incapacitate active sensors such as a
LIDAR. We compromise slightly on the cost of the vision-
based depth sensors (on the order of $10, 000s for LIDAR
and thermal sensors, and whose costs are dropping rapidly),
while noting that this is far lower than competing radiological
techniques. We achieve the following functionality with our
sensor fusion suit (please see the accompanying video material
website [12] for a full summary),

• Single source tracking: We show that a depth sensor
paired with a single radiological detector can easily iden-
tify a single moving source in a cluttered and fast moving
environment, without knowing the source strength. We
show this for a lab environment, as well as for tracking
in a real-world military installation.

• Multiple source tracking: We also demonstrate, for the
first time, a simple and robust non-blind signal separa-
tion can detect and track multiple radiological sources,
estimating the relative unknown strength of each.

• Blind tracking: We investigate a variety of occlusion-
resistant applications by combining the vision and radi-
ological measurements in the Kalman filter framework.
By adding additional radiation detectors to our system,
we demonstrate a new capability of tracking a radiation
source through occlusions.

• Blind tracking with novel depth sensor: We repli-
cate single radiological source detection, localization and
tracking with a novel catadioptric thermal stereo pair. The
novel optics reduce cost since only one thermal camera

is needed, and the passive sensor addresses some of the
limitations of the LIDAR setup.

• Rendering NLOS views using blind tracking: NLOS
research has given us many ways of sensing through
and beyond obstacles [13]–[15]. Using our radiological
sensing as an example of NLOS sensing, we propose a
method to render unseen human motion by building a
motion graph of the tracked individual prior to occlusion.
We use the estimated blind tracking to drive rendering
of images of the scene as if it was viewed through the
obstacle.

C. Related Work

3D Vision and Radiological Sensing: Most efforts [3],
[4] at LIDAR and rad-detector fusion focus on rigidly con-
structed gantries in static scenes. Other efforts use coded
apertures (where the random pattern is made of lead squares)
to encode directionality [5] in the isotropic sensor, to enable
stereo reconstruction [7] or to reduce noise [16]. Inferring
material properties, and not just geometry, from the visual
measurements allows for estimating background radiation [6].
We show how to replicate these types of capabilities, at a small
fraction of the cost of the coded aperture systems, by inferring
radioactive source strength and radial distance together, as
byproducts of our fusion approach.

Sensor Fusion: Multi-modal sensor platforms allow the
combination of thermal, acoustic, sonar, LIDAR, etc. This
has a long history in 3D vision and recent efforts have had
significant impact [17]. In the radiological sensor domain,
using many rad-detectors have resulted in intelligent radiation
sensor systems (IRSS) [18] which are based on distributed
radiation sensors coupled with networked position data to
detect and locate radiation sources, either using geometry [18],
[19], statistical models [20]–[22], particle filtering [23], or
combining rad-detection with electromagnetic induction data
[24]. All of these efforts rely on a large number of radiation
detectors and are prohibitively expensive, or suffer from low
efficiency; our goal is to achieve similar results with just one or
two rad-detectors. Mobile systems that fuse radiation detection
with a high-resolution 3D vision sensor (eg Microsoft Kinect)
are being used to localize stationary radiation sources in a
3D environment [25]–[27]. Closest to our work is [10] where
sensor calibration is presented and its noise characteristics
analyzed. In contrast, we show that a depth enables simple
user-driven calibration and allows for results such as tracking
multiple sources and tracking through walls.

Depth from Thermal Imaging: Thermal sensors are be-
coming more widespread, and commercial available smart-
phone sleeves exist ≈ $200 (for e.g. from FLIR). We propose
a novel catadoptric system similar to that proposed for visible
light cameras [28] using a single camera and a planar hot
mirror. This enables, for half the cost, a thermal stereo pair,
allowing the use of well-known thermal vision algorithms for
successful detection, segmentation and tracking, such as [29].

Motion Graph for NLOS Rendering: Many NLOS [13],
[14] sensors have been proposed to recover imagery beyond
visual obstacles. In particular we note that [14] passively
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recover a 1D signal of movement beyond the visual field-of-
view. Rendering views from such data is a fascinating direction
of research. We propose to do this by exploiting motion models
that can be generated before occlusion occurs. Such models
exist to understand human motion in videos [30], [31]. Another
approach is to use recorded human motion as an example
of motion to synthesize unrecorded motion. We utilize the
motion graph [32] which uses graph topology to link sections
of motion capture data at similar frames to generate human
motion not present in the data set. While most motion graphs
use motion capture data [33], [34], there have been attempts
to utilize it with 3D video [35], as we do in this paper, in
the context of radiological sensing. The resulting technology
enables security operators to see a visualization of identified
threats even during times of NLOS for both the operator and
his sensors, greatly aiding response-time and accurate decision
making

II. OVERVIEW, SETUP AND KALMAN FILTERING

Our hybrid sensor suite produces radiological measurements
and 3D vision sensor-based tracking of moving objects in
the scene. Both of these streams of information can be
converted into trajectories, i.e. 1D signals that denote change
in radial distance over time. As described previously, the radial
trajectory for each object i is Rivision(t) and for the fall-off
from a single radiological source is Rsensor(t).

The core problem of sensor fusion in our application be-
comes analysis of these signals to find those tracked objects
that carry or contain radioactive material or sources. For N
multiple sources, indexed by n, the response at the sensor
is a weighted combination of the count rates, which are
related to radial trajectories through the inverse square law∑N
n=1 wn(t) ∗ 1

(Rn
sensor(t))

2 .
The measured trajectories and the unknown, estimated

trajectories depend on the application. For example, in an
occluded environment, the vision trajectories are unknown
but the radiological trajectories are known. In contrast, in a
multiple source situation in open space, the vision trajectories
are known but the radiological weights wn are unknown.

Teasing apart the unknown components, given measured
trajectories as priors, can be cast as non-blind signal sepa-
ration [36]. With multiple radiological sources, the problem
specifically becomes a non-negative least squares analysis
of the radiological trajectory, and we discuss heuristics for
robust performance in the face of radiological interreflections,
occlusions, noise and radiological background noise.

Our focus in this paper is the novel radiological-depth
sensor combination, along with new depth sensor designs
and algorithms for rendering NLOS data. We retained only
the relatively simple non-blind signal separation algorithm on
the raw data since it robustly produced useful results in our
context. More sophisticated algorithms, such as say convex
optimization [37] or compressive reconstruction [38], may pro-
vide additional performance at the cost of extra computation.
As an example, we used the transformation metric in [39]
to make radiological trajectories from similar objects appear
closer to one another, and we found only a small improvement
in single source experiments. Further analysis of the recovery
algorithm could be a topic of future work.

While sparsity analysis [38] might seem useful when we
wish to track a few sources among many people and objects
in a scene, in our experiments we found that, practically, non-
negative least squares with a sparsifying threshold worked well
and did better than sparse signal reconstruction by using L1
optimization. In most of our experiments, we processed either
the trajectories in L2 space or by using a similarity transform
applied to appearance profiles described in [39]. Finally, a
small number of additional false positives are acceptable when
determining the identity of the trafficker as long as the correct
trajectory is found, i.e. the right person is apprehended.

A. Experimental Setup

Radiological preliminaries: The algorithms we developed are
demonstrated on a physical experimental setup that uses EJ-
309 scintillator detectors like the ones shown in Fig. 1. The
main radiation source used in this paper is a Californium-
252 fission source (131-64 µCi strength, as depending the
date of each specific measurement data set used, which
is specified on this project’s website). A Plutonium Beryl-
lium (PuBe) (α,n) source (1 Ci) was used alongside the
Californium source for the two-source experiments. Both
sources are isotropic, with the fission source having a slightly
softer spectrum, thus having a slightly reduced detection
efficiency per emitted neutron. Both sources emit a broad
spectrum of mostly detectable gamma-ray energies. In the
device assembly facility (DAF) experiments, a BeRP 4.484kg
weapons-grade plutonium sphere was used, also emitting
a fission spectrum of neutrons and gamma-ray energies.

Fig. 1: Two EJ-309 scin-
tillator detectors (3-by-3
and 8-by-5 inch, respec-
tively) as examples of
nearly isotropic radiolog-
ical sensors.

Our rad-detector uses organic
liquid compound EJ-309 [40] that
has both a high flashpoint and
low chemical toxicity when com-
pared to other detector liquids.
A cylindrical alumina cell holds
the liquid, of dimensions 3-by-
3 inches (diameter by height).
The diameter and height of the
scintilation chamber are the same,
causing this type of detector to be
nearly isotropic. Another size of
EJ-309 scintillation detector was
used, having dimensions of 8-
by-5 inches (diameter by height).
This detector, because of its size,
is directional, but was placed at
the boundary of the experiment
area so the source would hit the
detector in a way that the direc-
tionality of the detector was minimized. Scintillation in the
liquid due to radiation depositing energy is absorbed by a pho-
tomultiplier tube (ET-Enterprises 9821B), and then converted
into an electronic signal with high gain. A 14 bit, 250 MHz,
16-channel digitizer data acquisition system (Struck SIS3316)
was used, which has no input buffer and can continuously
collect data.
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Radiological safety: Safety is of the utmost importance when
performing these experiments. During the experiments per-
formed in our lab at the University of Florida, all participants
carrying sources were trained in radiation safety and given
dosimetry badges to monitor their dosage and keep it at safe
levels. All badges used came back with below detectable limit
results, emphasizing minimized dose to experimenters.

Proper safety was observed while measuring at the device
assembly facility as well. Prior to arriving at the DAF, every
participant completed the DAF training, which includes safety
training. Only properly trained DAF personnel handled the
sources while performing experiments at the DAF, and the
strong sources were not stored or carried on the body, in
accordance with DAF regulations. Instead, the sources were
placed on rolling carts, and these carts were pushed by the
trained DAF personnel for the experiments.
LIDAR preliminaries: We use the Velodyne HDL-32E LI-
DAR which generates a point cloud with 70k points per
frame at 10Hz with a 360◦ horizontal field of view (FOV)
and a vertical FOV between +10.67◦ and −30.67◦ from the
azimuth. The vertical angular resolution is ≈ 1.33◦, and the
horizontal angular resolution is ≈ 0.16◦. This LIDAR has
an accuracy of 2cm at a distance of 25m. Tracking moving
humans is a core problem of computer vision, and the number
of efforts in this space are too numerous to list here; see
Ref. [41] for a good survey. We are focusing on situations
where people are carrying radiological sources. To reduce the
computational burden and decrease response times, we project
the 3D data from the 360◦ FOV LIDAR onto a 2D plane
where 1 pixel is equal to 2.5cm. This effectively groups the
2D point cloud into clusters of closely spaced points, and since
the pixel size is a little larger than the accuracy of the LIDAR,
it eliminates uncertainty in the measurements of objects within
25m of the LIDAR. It also sets the vertical center of all objects
in the scene to the height of the LIDAR, a good assumption for
source location if there is no prior knowledge of its location.
We use background subtraction to separate the static point
clusters from the moving clusters. The moving clusters are
considered moving objects of interest and these are fed into
a Kalman filter for object tracking [42]. Transforming the
point cloud into a 2D representation of the data reduces the
computational burden of grouping the data points into clusters.
It also makes applying the Kalman filter less computationally
intensive because the Kalman filter only needs to track the
object in 2 dimensions. The loss of height information could
be a problem in areas where there is significant change in
elevation, but we performed our experiments in a mostly
level environment because we thought it would be a good
representation of the most traveled areas in airports and other
areas this system could be deployed.

The Kalman filter uses prior information to estimate the
future state of the objects being tracked, based on a model used
to describe objects’ motion. It is used in many applications to
track moving objects in video [43]. The linear motion model
allows the Kalman filter to track randomly moving objects in
a scene [43], and this enables the system to track the moving
people used to carry sources in our experiments.

Before applying fusion, it is important to locate the radio-

logical sensor in the LIDAR frame of reference. We envision a
scenario where a space to be monitored (airport, docks, etc.) is
instrumented with a small number of reasonably priced omni-
directional radiological sensors and a larger number of cheaper
vision sensors. These differences in number are because visual
sensors are affected by opaque obstacles (e.g. walls) and
require proper placement for full coverage.

Most previous efforts have focused on highly engineered
setups [3], [4], [44] to estimate the relative pose of the
LIDAR and radiological sensor. In the unstructured domain,
[10] have proposed a calibration technique with a continuous
wave time-of-flight (TOF) sensor. Since the method requires
blind estimation of the radiological sensor location (i.e. self-
calibration) errors in the optimization can result in location
errors of the order of 1 meter. In contrast, a 360◦ FOV vision
system such as the LIDAR pictured in Fig. 1, can, in fact,
directly view the radiological sensor. The only problem is
disambiguating the radiological sensor in the field-of-view.
To make the problem easier, we currently require that the
user clicks on the location of the sensor, in the top-down 2D
projected view. From this point on, we will assume that the
location of the LIDAR is at the origin (0, 0, 0) and the location
of the radiological sensor is at coordinate point (Sx, Sy, Sz).
Catadioptric thermal stereo preliminaries: Catadioptric
camera systems use a single camera and a mirror to create
a rectified stereo pair. While the Kalman filter framework is
also used for the thermal stereo experiments, this device is a
passive sensor when compared to the LIDAR and therefore
has well-known advantages. These sensors can also be used at
night where traditional cameras cannot. Thermal cameras can
be used to spot aircraft at night, seacraft by night, and segment
people from the background trivially due to the difference
in temperature. Long Wavelength Infrared (LWIR) cameras
(≈ 9 − 14µm) can also be used in rain, fog, dust conditions
where the Short Wave Infrared (SWIR) LIDAR would show
degraded ability.

Uncertainty: The LIDAR has a 2cm accuracy at a range
of 25m, which introduces some uncertainty into the system.
This uncertainty will translate into uncertainty in the location
of the moving objects’ locations and create noise in the
radial trajectories measured by the LIDAR, creating potential
problems when localizing the source, and when using signal
reconstruction for tracking multiple sources.

Uncertainty also lies in the measurements from the radio-
logical detectors. The decay process of radiological source is
non-deterministic, causing uncertainty in the radial trajectory
calculated from the radiological counts (detection statistics
uncertainty). This translates to uncertainty in the radial dis-
tance measurement calculated from the detector, which will
negatively impact the localization of the source and the signal
reconstruction used to locate multiple sources simultaneously.
Not having prior knowledge of the source being trafficked is
a major source of uncertainty, requiring us to develop a model
of the intrinsic efficiency on the fly. Lacking prior knowledge
of the source’s location on a person adds uncertainty to the
radiological data from the detector.

The uncertainty in the LIDAR and the radiological detector
combine results in uncertainty in the radiological trajectory
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signal, and in the object trajectory signals. As the trajectories
from the LIDAR and the radiological detector become more
dissimilar due to uncertainty, the person carrying the source
is more difficult to be correctly identified for both the single
source and two source localization. For blind tracking, the
uncertainty in the sensors result in uncertainty for the location
of the occluded source, and uncertainty in the mapping of
intrinsic efficiency λ(R) for each detector. The motion graph
is affected by this uncertainty and it results in uncertainty in
the path reconstruction the motion graph uses to visualize the
source behind occlusions.

Sensor suite setup: To set up the sensor suite, we place
one or more EJ-309 scintilator detectors in the room, and the
LIDAR is placed on a table at a height about chest height,
directly over one of the scintilator detectors. We measure
the distance between the LIDAR and each scintilator detector
either with the LIDAR, or by hand in the case of detectors
that are occluded from the LIDAR’s view [45]. When we
convert the radiological measurements from counts to Rnorm,
we use simple vector addition to transform the trajectories
measured by the LIDAR into the point of view of each
detector. We take background measurements to calculate the
constant background radiation.

III. SINGLE SOURCE TRACKING

In this section, we tackle the problem of finding and
tracking a single moving radiological source. One of the main
issues when tracking such a radiological source is that the
measurements at the radiological sensor (usually called counts)
depend on both intrinsic efficiency (λ) and the source-sensor
distance (R), i.e. the count rate is

C = λ(x, y, z) ∗ e−σR ∗ 1

R2
. (1)

Exp GT Unaltered Signal Transformed Signal
Det Cor y/n Det Cor y/n

1 1 1 0.984 Yes 1 0.840 Yes
2 1 1 0.986 Yes 1 0.842 Yes
3 1 1 0.992 Yes 1 0.595 Yes
4 3 3 0.991 Yes 3 0.686 Yes
5 1 2 0.991 No 2 0.915 No
6 3 1 0.993 No 3 0.846 Yes
7 2 2 0.988 Yes 2 0.933 Yes
8 1 1 0.982 Yes 1 0.726 Yes
9 3 3 0.990 Yes 3 0.815 Yes
10 3 3 0.994 Yes 3 0.956 Yes
11 2 2 0.994 Yes 2 0.703 Yes
12 3 3 0.989 Yes 3 0.838 Yes
13 3 3 0.994 Yes 3 0.779 Yes
14 2 2 0.993 Yes 2 0.834 Yes
15 2 2 0.999 Yes 2 0.985 Yes

TABLE I: Single source detection results (131µuCi Cf-252)
both with and without the transformation from [39]. The
trajectory indicated by GT (Ground Truth) is carrying the
radiation source. The trajectory indicated by Det (Detected
Signals) is detected to be carrying the radiation source. Cor
indicates correlation between the original radiological signal
and the reconstructed signal. A correct detection is given by
”Yes” in the y/n column.

Intrinsic efficiency (λ) is a function of source strength,
along with the size of the radiological sensor and its internal
efficiency, and the room geometry. (x, y, z) is the 3D location
of the source and R =

√
(x− Sx)2 + (y − Sy)2 + (z − Sz)2

is the radial distance from source to radiological sensor. σ
is the scattering and absorption of radiation in the medium.
This will be dependant on the material between the source
and the detector. Most of the time during our experiments, it
is air, but occasionally changes when a person or wall comes
between the source and the detector. For fast neutron radiation
data the attenuation is only about 1% per meter of air distance
travelled. Since we are measuring the radiation sources at close
distances (<10 meters) we can assume that the attenuation
from the e−σR term will be negligible, which then results in a
simplified equation C = λ(x, y, z) ∗ 1

R2 . Riley et al [10] also
assumes that the exponential term is negligible for air at close
distances for localization and tracking.

Note that this equation is similar to the near-lighting model
[46] in the case where the camera directly images the source,
where the numerator would be the light-source intensity. The
dependence of the “source strength” λ(x, y, z) ∗ e−σR on the
scene is due to radiation’s propensity to penetrate material
and scatter about the scene. This produces different counts,
especially if the source or sensor is near the floor or walls.
Even in the absence of large objects or boundaries, there is a
weak dependence on scattering through air, governed by the
normally small parameter σ.

Of course, the other issue is that the low cost isotropic
radiological sensors used in the experiments in this paper
have no angular resolution and cannot tell where in the scene
the detected material is located. Before we explain how to
exploit the 360◦ FOV LIDAR to solve this problem, we make
one more assumption about how the model for the intrinsic
efficiency λ(x, y, z) can be made simpler, similar to previous
models such as from [10]. We approximate the numerator in
Eq. 1 as a function that slowly varies with R,

C = λ(R) ∗ 1

R2
. (2)

Consider a visually cluttered scenario where there is only
a single source in the scene. From the Kalman filter-
based tracking, let us assume we have tracked all ob-
jects in the scene O1, O2, ..OI throughout the time of
the experiment T . Each object would have a (x, y, z)
trajectory in our 3D LIDAR space, for example Oi :
((xi1, yi1, zi1), (xi2, yi2, zi2), ...(xiT , yiT , ziT )), and this can
easily be converted into radial distance measured from the
radiological sensor’s location at (Sx, Sy, Sz), for example
Oi : (Ri1, Ri2, ...RiT ).

Now consider the count measurements Ct at each time
instance t over the time interval T , denoted as C1, C2, ..., CT
from the radiological sensor itself. These must, of course,
be only dependent on the movement of the person carrying
the single source and invariant to the other people in the
scene. Inverting Eq. 2, we can convert these count mea-
surements into radial measurements, modulated by the un-
known source strength λ. Therefore the counts C1, C2, ..., CT
from the rad-detector can be converted into radial distances
(Rrad1, Rrad2, ...RradT ), given by Rradt =

√
λ
Ct

.
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Fig. 2: Results from two single-source tracking experiments. The person carrying the radiological source is Person 2. (top) The
detection and tracking of a radiological source during periodic motion. (lower) The detection and tracking of a radiological
source during random motion. (a,d) RGB image of the scene. (b,e) An Image of the LIDAR data’s 2-D representation. (c,f) A
plot of the distance to each person above a plot of the radiation data.

We can remove the dependence on intrinsic efficiency by
normalizing the Rradt values by taking the ratio of the radial
measurements with, say, the minimal radial measurement
corresponding to the shortest distance from the source to the
radiation detector. We chose this because it corresponds to the
data point with the highest count rate and therefore the best
statistics. Rnormt = Rt

Rmin
=

√
Cmax

Ct
. To get this result, we

must assume that λ(R) is a slowly varying function of R, and
that since R remains under 10m, any change in λ(R) caused
by a change in R will be negligible. Similar normalization can
also be applied in the objects tracked by the Kalman filter, for
example Onormi : ( Ri1

Rimin
, Ri2

Rimin
, ... RiT

Rimin
). These trajectories

are now independent of intrinsic efficiency and depend only on
geometry. We can then find the Kalman filter trajectory that
minimizes the cosine distance [47] between the radiological
measurements to determine which moving Kalman filter object
is carrying the radiological source.

The radiological data is dealt with in 3D space. The point
cloud we collect from the LIDAR is converted to a 2D image.
By doing so, not only does this make point clustering and
grouping computationally less intensive, it also sets the z value
of the objects all on a single plane, and that plane is equal to
the height of the LIDAR. Since we set the LIDAR at a height
roughly approximating the mean height of a person, we are
effectively tracking the center of the person in 3D even when
using the 2D LIDAR representation to track the object. The
center of a person is a good assumption of the location of
the source given no prior knowledge of the sources location.
This causes an error because the center of the person and the
center of the source are not guaranteed to coincide, but our

results demonstrate that the error does not impact our tracking
ability. If we do know where on the person the source is, then
we can change the z plane to match the expected location of
the source. Meaning that Rrad ≈ R for the people carrying
the source.

From this above discussion, it is clear that we are tracking
with the vision sensor in 2D, not 3D, to save computation.
With additional computation, this can easily be changed.
However, we note that the radiological sensing and distance
estimates happen in 3D. In other words, the 2D tracking
does not affect the attribution of the vision trajectory to the
radiological trajectory.
Count rates: For the detectors and sources used here the
gamma-ray background was approximately 45 cps and the
neutron background was 1 cps. When measuring with a source
the average count rate generating a radiological trajectory was
19 cps and 4 cps for gamma-rays and neutrons, respectively.

Since the trajectories only depend on geometry, finding the
trajectory that best matches the radiological measurements
does not necessarily require both signals be unfiltered. If both
the radiological measurement data and the trajectories are
passed through the same filter, the cosine distance should still
find the best match between the radiological measurements
and the n Kalman filter trajectories of the moving radiological
sources. This lets us apply filtering to the data in an attempt
to improve the detection results. We apply the filter specified
by Koppal et al [39], to our radiological and trajectory data in
an attempt to improve the detection results. This filter takes
the distance signal as an input and outputs a signal that is
increasing at a constant rate when the slope of the signal is
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positive, and decreases at a constant rate when the slope of
the input signal is negative. When the signals slope is zero,
the value of the output signal is set to zero as well. Note
that while the maximum cosine distance may decrease with
this filtering technique, the other cosine distances that do not
correspond to a positive detection will decrease by a larger
amount, potentially resulting in more accurate detection.
Success and failure metrics: We consider a positive or correct
detection when the person carrying the source is identified
as carrying the source by the sensor suit and algorithm.
For our single source experiments, we assume there was
only one source in the scene. The failure case is when the
system and algorithm incorrectly identifies a person who is
not carrying the source to be carrying the source. We recorded
the person carrying the source in every experiment, and used
this information to verify the accuracy of the system, but never
used it as prior knowledge input for the system. The reason
for the failure of the two failed experiments in table I was
because two or more trajectories R were similar to each other,
and one of these happened to be carrying the source. If the
source carrier is occluded from the LIDAR of a long period
of time, the Kalman filter cannot track the person, so the
algorithm cannot locate the source. It is true that if more than
one trajectory is similar to Rnorm, then it is not guaranteed
that the correct trajectory will be selected as having the highest
value. However, this does not mean that the value associated
with the correct object was much lower, it simply means that
there was another track that was higher by chance. Given this
fact that there are two high values, there are easy ways to
combat this failure in practice. Since both trajectories will have
high correlation values, it can be on the security personnel to
apprehend multiple people with a high correlation score, and
inspect each of them. This will still lead to the apprehension
of the person carrying the source, it will also result in some
false positives.
Evaluation: Table I shows the results from 15 experiments.
Each experiment has a group of two or three people moving
in a random motion in a laboratory environment. The Cf-252
source strength in these experiments was 107-113 /muCi. In
13 of those experiments, we correctly detected the radiological
source holder, giving an accuracy of 86.67%. In Fig. 2 we
show two of the experiments summarized in the table. In each
of these two experiments Person 2 has the source. The final
column shows plots of the trajectories (distance vs. time) for
all three people in the scene, and under that a plot of the
radiation data. There is only one trajectory (Person 2) that
matches the radiation data’s waveform.

Different moving objects have the potential to generate the
same radial trajectory, and this could cause false positives in
localizing and tracking the source. to explore this in simula-
tion, we simulated 10 simultaneous people randomly walking
in a large featureless room for 40 seconds. We then systemat-
ically chose each person to be the source carrier by selecting
their radial trajectory as the radiological data and performing
the dot product with each of the trajectories in the scene.
After we used the unaltered trajectory as the radiological
data, we then applied additive white Gaussian noise and down
sampling to the trajectories to simulate the noise in the real

radiological data. We performed 16 experiments this way, and
include the most important results in this paper. For experiment
1, we used the unaltered trajectory as the radiological data.
Experiment 2 we down sampled the trajectory by a factor of
10. For Experiments 3 and 4, we added white Gaussian noise
with mean 0 variance 1, and mean 0 variance 9, respectively.
For experiments 5,6,7 we used both additive white Gaussian
noise and down sampling simultaneously; using AWGN with
mean 0 and variance 1,4,9 respectively. For all 3 experiments
(experiment 5, 6, 7) we down sampled by a factor of 10. The
results of this can be found in figure 3; the dot product of each
trajectory with the radiological data is show in the tables in
Fig. 3.

For experiments 1-4 there was no errors in localizing the
source. For experiments 5, 6, 7 many of the sources were
correctly detected, but some were not. When this occurs, the
dot product value tables in figure 3 show that the correct
trajectory had a similarly high dot product value. Trajectories
caused by the noise and uncertainty of the detector can cause
the detector to select the wrong trajectory as the source, and
there are ways to overcome this we would like to explore,
such as increasing the length of the trajectories in time,
and selecting all trajectories with high dot product values to
apprehend and inspect for radiological material.

IV. MULTIPLE SOURCE TRACKING

In many environments, such as nuclear power plants or
nuclear medicine clinics, there may be more than one radio-
logical source being transported. Imagine a coordinated attack
in which the nuclear material has been distributed among
many individuals in an attempt to make each piece of the
material smaller, lighter, and easier to transport. Each piece
of material could also require less shielding than the large
source, reducing the amount of shielding around each of the
smaller sources. While spectral information is available from
these sensors, using it to differentiate between multiple sources
is only viable if we have prior knowledge of the material
makeup of each source. It cannot be assumed that in a real-
life trafficking situation the material makeup of each source
is known, so we propose to use a vision sensor to provide
additional information. To allow for better monitoring and
awareness, it is useful to consider how to track multiple such
sources. The measurements in the radiological sensor are linear
in the number of counts C in Eq. 2, so, at some time t, given
N sources (1, 2, ...N), the counts measured would be,

C(t) =

N∑
n=1

Cn(t) =

N∑
n=1

λn ∗
1

Rn(t)2
, (3)

where Rn(t) is the radial distance from the nth source to
the radiological sensor. Now consider again, from the Kalman
filter-based tracking, we have tracked all objects in the scene
O1, O2, ..OI throughout the time of the experiment T . For
each object, we can convert the radial distance from the
radiological sensor’s location (Sx, Sy, Sz), into a series of
inverse-square fall-off terms, Oi : ( 1

R2
i1
, 1
R2

i2
, ... 1

R2
iT

).
If we collect the radiological counts as a T × 1 vector C,

and the radial inverse-square fall-off terms for each object as
a T × I matrix O, then
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Fig. 3: We performed simulations of random walks. (a) is the random walk of each simulated person in 2D. (b) is the
corresponding Radial trajectory of each random walk. (c) is the result using the unaltered radial distance signal as the radiological
signal when comparing with the radial trajectory (Exp 1). Notice how each source carrier is detected correctly as carrying the
source. (d) visualizes the simulated radiological data we created by altering the original radial distance signal. (e) shows the
results for the each of the 6 altered signals. A green entry means the system detected that trajectory corresponds to teh source
carrier. If there is a red entry the row, the detected source carrier is not the true source carrier.

C = O Λ, (4)

where Λ is an I × 1 vector such that

Λ(i) =

{
λi if Oi is carrying a radiation source
0 otherwise

Use of L2 norm: While radiological counts are usually
modeled by Poisson distributions, we note that the radiological
trajectories combine the smooth motion of the source with the
Poisson distribution of the counts, i.e. any measurement is
a combination of the source-sensor distance and the source
strength. Additionally, the frame rates of the radiological
counts and the vision sensor differ by many orders of mag-
nitude. Further, the radiological counts show significantly
more noise than the visual sensors. The end result is that
linear smoothing techniques are applied to the radiological
sensor measurements so the counts can be modelled by a
Gaussian distribution. Modeling radiological counts (and for
our purposes, the corresponding calculated radial distances)

using a Gaussian distribution instead of a Poisson distribution
is acceptable when the expected value is large. This technique
has been used before to localize radiological sources [45],
[48]. In particular, Poisson works best when the number
of samples is low. This is the main reason why L2 norm
(which optimizes Gaussian noise in a least squares sense) is
a reasonable approximation for our scenario.

We used non-negative least-squares matrix factoring to solve
Eq. 4, and sparsified Λ by setting all the values lower than a
user defined threshold to zero, and declaring the trajectories
corresponding to those remaining non-negative values as the
ones with the radiological sources. The user defined threshold
was set as some fraction of the largest coefficient in an attempt
to excluding all coefficients much smaller than the largest
coefficient. In most cases, the threshold was set at 1

2 . In
practice, we found that threshold setting was easy, and could
perhaps be automated. We did not need to add additional
constraints to enforce the sparsity of Λ during its estimation,
although these can be used to increase robustness in the future.

Evaluation: In Table II we show the first set of simulated
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Fig. 4: Results from two-source tracking experiments. Red and yellow indicate the people carrying radiation sources. (inset)
RGB image of the scene. (a,d) An image of the LIDAR data’s 2-D representation. (b,e) A plot of the distance to each person
and a plot of the radiation data. (c,f) A plot of the radiation signal (orange) and the reconstructed signal (grey).

Exp GT Unaltered Signal Transformed Signal
Det. y/n Det. y/n

1 2, 6 2, 6 Yes 2, 6 Yes
2 2, 5 2, 5 Yes 2, 5 Yes
3 2, 6 2, 6 Yes 2, 6 Yes
4 2, 6 2, 6 Yes 2, 6 Yes
5 2, 5 2, 5 Yes 2, 5 Yes
6 3, 5 3, 5 Yes 3, 5 Yes
7 3, 6 3, 6 Yes 3, 6 Yes
8 3, 6 3, 6 Yes 3, 6 Yes
9 3, 5 3, 6 No 3, 5 Yes
10 2, 5 2, 5 Yes 2, 5 Yes
11 2, 5 2, 5 Yes 2, 3 No
12 2, 4 2, 4 Yes 2, 4 Yes
13 3, 6 3, 6 Yes 3, 6 Yes
14 3, 5 3, 5 Yes 3, 5 Yes
15 3, 5 3, 5 Yes 3, 5 Yes

TABLE II: Two source detection results using simulated data
for both unaltered and transformed data. Both sources have the
same strength in these simulated data sets. The trajectories
indicated by GT (Ground Truth) are carrying a radiation
source. The trajectories indicated by Det (Detected Signals) are
detected to be carrying a radiation source. A correct detection
is indicated by a ”Yes” in the y/n column.

experiments that we ran to test our approach. These were
“real” simulations in the sense that we took real radiological
counts from two actual experiments and added these using Eq.
3, and attempted to recover the ground-truth. The table has
the ground-truth radiological pair, and the detected pair. Since
this was a simulated setting, we could create groups of up to
7 “people” using vision trajectories from other experiments,
to see how well our method can detect the two sources in
a cluttered environment. A few additional false positives are

Exp GT Unaltered Signal Transformed Signal
Det. Cor. y/n Det. Cor. y/n

1 1, 2 1, 2 0.996 Yes 1, 2 0.598 Yes
2 2, 1 2, 1 0.995 Yes 2, 1 0.579 Yes
3 1, 2 2, 1 0.993 Yes 1, 2 0.487 Yes
4 2, 3 3, 2 0.996 Yes 2, 3 0.607 Yes
5 1, 3 3, 1 0.991 Yes 1, 3 0.334 Yes
6 2, 3 3, 2 0.994 Yes 3, 2 0.102 Yes
7 1, 3 1, 3 0.996 Yes 1, 3 0.479 Yes
8 1, 3 1, 3 0.992 Yes 1, 2 0.613 No
9 1, 3 1, 3 0.996 Yes 1, 3 0.461 Yes
10 1, 3 1, 3 0.996 Yes 1, 3 0.462 Yes
11 2, 3 2, 3 0.994 Yes 2, 3 0.603 Yes
12 2, 3 2, 3 0.997 Yes 2, 3 0.617 Yes

TABLE III: Two source detection results using real experimen-
tal data both with and without the transformation from [39].
The trajectories indicated by GT (Ground Truth) are carrying
a radiation source. The trajectories indicated by Det (Detected
Signals) are detected to be carrying a radiation source. A
correct detection is indicated by a ”Yes” in the y/n column.
The first number in both the GT and Det columns corresponds
to the stronger sources and the second number corresponds to
the weaker source.

acceptable if every trafficker is correctly identified. This means
that a correct detection can be achieved despite a detected false
positive as long as all ground truth trajectories are detected.
In 15 experiments, we achieved only one incorrect detection,
resulting in 93% separation and detection rate.

We then performed 12 actual experiments using two ra-
diological sources, as shown in Table III. The table shows,
again the ground-truth radiological pair, and the detected pair,
as well as the reconstructed distance measure from the cosine
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distance metric. Running our algorithm with the unaltered data
yielded a detection rate of 100%. Fig. 4 shows two experiments
from the set of 12. Each person wearing a backpack is
carrying a radiation source. The center image shows three
vision trajectories, one for each person in the scene, and the
single radiological response (C in Eq. 3). The final column
compares the original radiation signal shown in orange to the
reconstructed signal using the weighted trajectories (Ci and Cj
in Eq. 3) that have been inferred from the single radiological
response C.

Fig. 5: Graphs of the probability of getting an absolutely
correct detection (i.e. no false positives nor false negatives)
at any threshold value. Simulated data is represented on the
left, real experimental data on the right.

False alarm rates: The success rates of tracking multiple
sources needs some qualification. If the correct threshold value
is known prior to separation, we are able to achieve correct
detection in 93% of the 15 simulated multi source experiments
and 100% of the 12 real experiments. However, we must
consider the scenario where the threshold for separation is
not known prior to separation. The weights from the non-
negative least-squares matrix factoring were taken from the
15 simulated experiments and the 12 real experiments. To
determine the threshold values that result in an absolute correct
detection (i.e. no false positives and no false negatives) for
each data set, the threshold was increased from 0 to 1 in
steps of 0.001 and a binary metric was returned indicating
if the detection was absolutely correct. Separating the data
into real and simulated data, we averaged the resulting binary
signal across all experiments, resulting in the probability of
any given threshold resulting in a detection with no false
positives nor false negatives. This result can be seen in figure
5. The optimal threshold for the simulated data is between
0.229 and 0.235, resulting in 87% of the experiments having
absolutely correct detection. The optimal threshold for the real
experimental data is between 0.250 and 0.253, resulting in
83% of the experiments having absolutely correct detection.
We also find that setting the threshold higher than the optimal
setting results in a higher chance of false negatives, while

setting the threshold lower results in a higher chance of false
positives.

V. BLIND TRACKING

Radiological sources emit radiation that can pass through
many materials that are opaque to light. There are light opaque
materials that radiation cannot pass through: gamma rays can-
not pass through high Z materials such as lead, and neutrons
cannot pass through low Z materials such as polyethylene
and other organic materials. Even if the radiation can pass
through a material, passing through any material will result in
the radiation being attenuated to some degree, but a detector
can still measure radiation from a source through many light-
opaque objects. Therefore, there is potential for tracking
radiological sources through opaque obstacles, perhaps even
far beyond visual range. However, the reason this is not done
in the radiological community is because the constant that we
made in the earlier section does not hold. In other words, the
source strength varies with radial distance, over time t, as

C(t) = λ(R(t)) ∗ 1

R(t)2
= F (R(t)). (5)

Since counts are now a non-linear combination of source
strength and distance, tracking single sources over long dis-
tances with a single radiological sensor is almost never done,
since it would imply finding F−1(C(t)) or inverting the above
equation. In our case, however, we are using a combination
of a radiological sensor and an 360◦ FOV LIDAR, which can
allow us to break the dependency between source strength λ
and radial distance R. The radiation signal would be attenuated
through occlusion materials, but unless the occlusion is of
variable geometry the change can be approximated by a fixed
step-function change during the occlusion. This allows some
ability to estimate that change when tracking a person visually
and knowing when they become occluded. Additionally, in
many security settings, thinner privacy walls are common,
which have only minor impact on the radiation transport.

Consider a scene with a single moving radiological source,
which we have identified using the previous methods. For a
given interval of time, we now know pairs of (C(t), R(t)), or
(F (R(t)), R(t)). This is because the radial distances R(t)s are
estimated directly by the LIDAR, and the counts come from
the radiological sensor. We can therefore fit a parametric model
(always linear in the results shown) to the (F (R(t)), R(t))
pairs. This data-driven approach makes it trivial to invert
F , since we can extrapolate the model to predict the R(t)
associated with any C(t) in any future time instance t.

The only problem remaining is tracking a person with a
radial distance R(t), since the person could be anywhere
in a circle around the radiological sensor. To break this
ambiguity, we have two strategies. In the case of short periods
of occlusion, we use the previous velocity vector estimated
by the Kalman filter, and intersect the circle with the ray
defined by this velocity vector and the last detected LIDAR
position. In the top row of Fig. 6 we show an example of
a person disappearing behind a large cubicle wall. The first
image shows the color frame at the moment of occlusion. The
second image is a 2-D representation of the LIDAR data before
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: Blind tracking results using a single detector (top) and two detectors (lower). (a,e) RGB image of the scene. (b-d,f-h)
A sequence of images from the 2-D LIDAR data’s representation showing the person being tracked through the occlusion. The
blue circles indicate the unidirectional distance from each detector to the person (Cf-252 source 102-113 µCi).

the person is occluded. In the third image, we intersect the
circle (depicted in blue) with the motion ray. This position
is fed into the Kalman filter. The final image shows that
the person reappears at the other end of the wall, with their
Kalman filter label intact, i.e. we have tracked the same person
through visual occlusion.

Obviously, the previous method fails if the person’s motion
deviates from the most recent Kalman filter estimated velocity
vector. To go beyond this, we simply add a second radiological
sensor and apply the same modeling algorithm as discussed
earlier. Given the two radiological counts from each sensor, we
can convert them into two estimated radial distances. These (in
2D) will intersect at two points, and we use the point closest
to the last seen LIDAR position, followed by Kalman filtering
to choose between the two intersection points. In the second
row of Fig. 6 we show an example of a person going behind a
wall, and then walking in a circle. The circular motion happens
completely behind the wall and is not visible by the LIDAR.
Yet, using the detector and LIDAR to estimate the (C(t), R(t))
map for each detector allows us to predict the location of the
person. Notice the two green circles intersect behind the wall,
and the red dots (depicting recent motion) show a circular
path.

A. Blind Tracking with Thermal Stereo

Thermal sensor technology is becoming widely accessible
and impacts many applications, such as finding the heat
from overloaded circuitry and other hazards in the home and
industrial areas, finding a hidden person or animal in hard to
see or dark places, etc. Compared with traditional cameras,
thermal camera have more advantages when performing peo-

ple detection because the infrared radiation from the human
body is within a certain range, allowing the person to be easily
segmented from the background.

To reduce the cost even further, we propose a novel stereo
method for thermal imagery. We use a catadioptric system to
optically create a rectified stereo pair using a single camera
and planar mirrors as shown in Fig. 7. Several researchers have
demonstrated different visible-light catadioptric designs [49].
While the idea has been used with single thermal detectors [50]
we believe that we are the first to apply this to full resolution
thermal cameras.

Our main algorithmic contribution to accompany our novel
thermal catadioptric design is a calibration function that incor-
porates the mirror temperature. In particular, we noticed that,
between the stereo pair images, there existed a temperature
differential that depends on the mirror temperature (i.e. the
ambient temperature of the scene). Further, the extent of this
differential is scene dependent; the reflected temperature for
the high-temperature (about higher than 40◦C) object would
be decreased, while it would be increased for low-temperature
object (lower than 18◦C). We propose a calibration step where
we acquire the relationship between the ambient (mirror)
temperature, reflected temperature and ground truth object
temperature (Fig. 7). Given this curve for certain camera
settings, if an object of known temperature is observed (for e.g.
healthy human) then we can infer the scene temperature, much
like a thermometer. Conversely, if the ambient temperature is
known from an on-board thermometer, the reflected image can
be corrected to real-world thermal radiation.

Experiment setup: Several designs for the catadioptric
systems have been proposed from previous research [49].
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(a) (b) (c)

Fig. 7: (a) The thermal distance-detection sensor setup and optical path. (b) Temperature mapping of the thermal distance-
detection sensor. (c) Scene and reflected scene are captured in the same frame. The left half is from the scene and right half
is from reflected scene. Note that the reflected temp. and converted temp. are in raw linear thermal camera measurements, and
can be converted to conventional temperature with a calibration step.

In this experiment, a single planar mirror was used. The
75mm×100mm protected gold flat mirror gave over 96%
reflection for the wavelength of 700nm-10, 000nm. The mirror
was placed parallel to the optical axis of the lens with the
gold coated surface facing to the incident light, which is the
only design for single mirror catadioptric system. The size and
position of the mirror also influence the field of view. The
thermal camera involved in the experiment is FLIR A6751sc
with a 13mm f/2.5 thermal lens sensitive to 3-5µm wavelength.
The images of scene and mirror reflected scene could be shown
in one picture that the camera captured (shown in figure 8). For
the measurements, we use a non-contact infrared thermometer
(LaserGrip 630 from ETEKCITY) to read the actual surface
temperature of object and mirror in Celsius degree. And use
the raw numbers(under default setting) that were given by
Software ResearchIR from FLIR company to note the object
temperature and reflected temperature.

Temperature Mapping: To generate the mapping relation,
we give the definitions of the temperatures. We defined object
temperature To as the temperature given by the camera, which
is a unitless quantity. Then reflected temperature Tr was also
a unitless number from the thermal camera that represents
the temperature of object reflected by mirror. And mirror
temperature Tm was the body temperature (in◦C) of mirror
that was measured by infrared thermometer. The temperature
mapping could be shown as

To = f(Tm, Tr). (6)

Then 70 measurements were taken, and 50 of them were
randomly selected as examples while the others were used
as validations. For each measurement, we recorded the values
of To, Tr and Tm. The fitting surface with lowest mean square
error was given in Fig.7 and we achieved this with a quadratic
in two variables. With this calibration surface, we could derive
any one of the three factors from the other two. For example,
we use Tm and Tr to compute ’converted temperature’ T

′

o. It
should be represented as

T
′

o = p00 +p10 ∗Tm+p01 ∗Tr+p11 ∗Tm ∗Tr+p02 ∗T 2
r . (7)

where p00=6.207e4, p10=-2925, p01=-2.737, p11=0.1767,
p02=1.339e−6.

Camera calibration and Person Segmentation: Before
calibration, we note, as shown in Fig.7, scene and reflected
scene were captured in the same frame. The ratio of scene
to reflected scene did not equal 1. So we manually set the
boundary to split the image in two. The left image was cropped
to the same size as the right image. For calibration, a 5 × 4
hollowed-out checkerboard was 3D printed for the camera
calibration, with 40mm edge length for each square. The
checkerboard was chilled in a freezer so it could be imaged
by the thermal sensor. Then Matlab Stereo Camera Calibration
app was introduced to generate the intrinsic and extrinsic
parameters for the stereo thermal system. Person segmentation
was performed by assuming that body temperature fluctuates
within a certain range. By looking for pixels within this
range of temperatures, we can easily and accurately segment
the human from the background, as the background will be
unlikely to contain pixels within the human body temperature
range. We used a mean filter to remove noise. We conducted
background subtraction for the image and flipped reflected-
image to reduce unnecessary noise. Then input the flipped
reflected image as Tr and mirror temperature Tm to Eq.7 to
obtain a converted image. The significance of this step was to
reduce the influence of the mirror, so the reflected temperature
could be converted to a similar range with object temperature.
Then according to To for human in the original image (left half
of Fig7 (c)), we set the thresholds of human body temperature.

Evaluation: After the segmentation, the rectified im-
ages (Fig.8(d)) were generated. We used the centroid of the
temperature-segmented human for tracking. The distance from
human to camera could be obtained by the well-known recti-
fied stereo equation D = B∗C

d , where B and C represented
baseline and focal length that were included in the parameters
from camera calibration, and d is the centroid disparity. We
used a moving average filter to smooth the curve and obtained
the results shown in Fig.8(a)-(c). We compared the thermal
distance-detection sensor with LIDAR, which we took as the
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Fig. 8: (a) Comparison between the results from thermal distance-detection sensor and LIDAR. Person walked from far place
to near. (b) Person walked from near place to far. (c) Person walked back and forth, and disappear when behind a pillar which
cause the absence of thermal data. (d) Image and reflected image are captured in the same frame.

Fig. 9: This figure shows the results of blind tracking using
the thermal stereo instead of the LIDAR. The results are
represented by a top-down view of the room. Blue area shows
where the thermal camera is located. The dark red shows the
path of the source carrier while within the field of view of the
thermal camera. The light red shows the path of the source
carrier while occluded from the thermal camera.

ground truth. The errors for each measurement were 0.9m,
1.2m and 0.6m respectively, averaged over the length of the
experiment. In the next section we evaluate the thermal stereo
pair for detecting radiological sources. Despite the relatively
large error in the measurements when compared to LIDAR,
the sensor is able to allow for robust blind tracking since the
depth ordering and trends in the measurements are correct.

B. Thermal Blind Tracking

We applied the blind tracking algorithm described previ-
ously with the thermal stereo camera system, as in Fig. 9 (Cf-
252 source, 64 µCi). The calibration of the entire setup was
done with a one-time single static LIDAR sensor scan that was
not used in subsequent measurements of the dynamic scene.
As before the radiation model λ for the room is estimated
from the depth information provided by the thermal stereo
camera, when the source carrier is visible. When the source
carrier exits the thermal camera’s field of view, the source’s
location can still be acquired by using the radiation model

of each detector to calculate a distance from each detector
to the source based on the number of counts each detector
receives. These radial distances allow the inference of source
location, using the Hampel filter [51] to replace outliers. We
leverage prior knowledge of the room to remove impossible
motion estimate that go beyond the room walls. Figure 9 shows
a person walking in a straight line behind a small vertical
obstacle in the top right of the scene. We are able to reliably
track the person through the obstacle and back along the same
path.

VI. MOTION GRAPH VISUALIZATION
OF BLIND TRACKING

In security and military applications, it may be useful to pro-
vide visualizations of the blind tracking described previously
to assist with suspect apprehension. This requires rendering
realistic looking and believable motion of the person carrying
the source that also is faithful to the blind tracking behind the
obstacle. In this section, we achieve this by building a motion
graph from a library of poses and actions. The key assumption
is that the person has been imaged from a significant number
of views and poses prior to occlusion.

Traditional motion graphs use high-fidelity 3D motion cap-
ture data. In practice such data might be obtained with high-
resolution arrays of time-of-flight cameras. Even the LIDARs
in our experiments are too sparse to use for conventional
motion graph algorithms. Instead, we demonstrate how to
use sparse 3D tracking information to reconstruct a motion
graph of 2D RGB images. We fuse each image captured prior
to occlusion with a 3D feature vector containing the object
centroid and current velocity (obtained from the Kalman filter).

The idea of a motion graph was proposed by Kovar [32]
and aims to automatically generate believable human motion
that follows a given path through 3D space by using 3D
motion capture data. We have modified the original design
so it can be used with 2D images instead of 3D motion
capture data. By using a traditional RGB camera with the
LIDAR, we are able to capture pose information with the
camera, and position/velocity information with the LIDAR.
We collect 2D RGB image data containing pose information
as well as the person’s direction and velocity. With all of this
information, we can generate a motion graph to reconstruct
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Fig. 10: A visual representation of part of the motion graph. (a-d) depict a single edge connecting two nodes. (a) is a visual
representation of the HOG features that describe the beginning node. (b) contains the five frames of animation that connect
the two nodes. (c) is the visualization of the HOG features that describe the termination node. (d) represents the velocity and
direction of motion in each frame of the edge animation that connects the two nodes.

believable human motion. We use background subtraction to
remove the person of interest from the background in the
RGB video, and then break up the data into the two necessary
sets for creating the motion graph; nodes, and edges. Each
node contains the direction and velocity information of the
person at that time instance, but also contain the person’s pose
information obtained by These key frames are run through
a histogram of oriented gradients (HOG) feature extractor
to quantify the pose information of the node as others have
done for human pose detection, examples are [52], [53]. Each
node is a HOG representation of a single key frame and
each node contains direction and velocity information of the
moving person captured by the depth sensor in that frame,
as shown in Fig. 10. The orientation and motion information
related to that single frame. The nodes are linked by edges
containing animation information (i.e. a video clip) along with
the person’s velocity and direction in each frame. These sets
of velocity and direction information form short paths that
represent the path taken by the person, and these paths are
linked to short animation information (i.e. videos). To generate
motion, we search for paths that best describe the input path
while simultaneously optimizing pose similarity between the
nodes. Between nodes (video clips) the start and ending frames
provide a distance metric based on the similarity between their
HOG-based feature vectors. The motion graph is constructed
from these nodes and edges and, to generate motion, the search
algorithm attempts to reconstruct a given path through the
scene in a least squares sense.

We consider the blind tracked path obtained from the
radiological detectors as the desired goal, and the motion
graph search algorithm reconstructs a path using the velocity

and location information contained in each node. For each
segment in the blind track, the match in the motion graph
was made using cross-correlations of person velocity across
the node or video clip. Simultaneously the pose data stored in
the RGB image at the beginning of each blind track segment
was converted in HOG and compared to the HOG of the
person in the previous segment. The path information from
the motion graph was then used to calculate the new position
of the character. Frame skipping and frame repeating was used
in cases where the motion graph data could not match the track
closely, to avoid visual artifacts.

For the motion graph to perform its visualization, it must
have an input path to attempt to reconstruct. We recover the
person’s location from behind the vertical white occluder using
the radiological data from the detectors. The location of the
person carrying the source is found by intersecting the Rrad
from each radiological sensor in the room. Recovering the
intrinsic efficiency λ(R) at each sensor is accomplished on
the fly when the source is visible to the depth sensor. Since
the mapping of intrinsic efficiency λ(R) is not calculated
beforehand, we are unlikely to obtain a complete mapping
of how intrinsic efficiency varies with R for the entire room.
This mimics a real-world tracking scenario, where we have no
prior knowledge of the source being trafficked and the only
way to find intrinsic efficiency is measuring it on the fly. The
incomplete mapping of intrinsic efficiency means that there
will be uncertainty in the location data, which causes there to
be noise in the location data. To minimize the effect of this
noise, we use the Hampel filter to identify and remove outliers,
and then average the remaining location points to recover an
approximation of the source location. For this tracking, the
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Fig. 11: We recover the person location behind the vertical white occluder in (a)-(c). In (a), the location of the person carrying
the source is found by intersecting 6 radiological sensors. Since the mapping of λ(R) for each sensor is performed on the fly
when the source is visible to the depth sensor, there is noise in the recovered candidate intersection points, shown in cyan. The
red dot is the mean location of the source once outliers have been replaced with the Hampel filter. In (b) the tracked locations
of the radiological source as it moves behind the visual occlusion in each frame are shown in red and can be seen to form a
closed shape. In (c) a circle is fitted to the source locations to generate a smoother closed shape for use in the motion graph.
(d,e,f) are 3 frames of the video created by the motion graph showing the source carrier walking behind the visual occlusion.
Please see the full video on our website [12].

resulting source locations form a closed shape, but using a
motion graph to reconstruct this noisy path without smoothing
will result in bizarre motion that is difficult for a human to
interpret visually. A circle is fitted to the source locations to
generate a smoother closed shape path to use as input to the
motion graph. There is a visual representation of this process
shown in figure 11. For video results, please see the full video
on our website [12].

The motion graph must provide an accurate visual represen-
tation of the source’s motion if it is going to be a useful tool
for security personnel. To explore the accuracy of the motion
graph, we seek to measure how accurately the motion graph
reconstructs an input path. There are two metrics we would
like to measure for the reconstructed path. The first is how
well the motion graph reconstructs a noiseless path; this will
be measured by cross correlation between the ground truth
input path and the output path, and will show how accurately
the reconstructed path resembles the ground truth path taken
by the source. The second metric is how well the motion graph

reconstructs an input path with added Gaussian noise; this will
show how accurately the motion graph reconstructs the input
path given to the algorithm. The goal here is to see the effect
of noise in our radiological measurements, and the robustness
of the motion graph as a smoothing operator. After fitting a
circle to the closed-shape radiation data, we pass it as the input
path to the motion graph, varying the Gaussian noise added
to the input path, and calculating the cross correlation. Refer
to figure 12 for the results of this experiment. The result is
that the cross correlation between the reconstructed path and
the noisy input path is near 1 at all SNR, meaning the motion
graph is successfully reconstructing the input path, even at
low SNR. The increase in cross correlation between the ground
truth path and the output path means that the motion graph has
trouble reconstructing the ground truth path if the input path is
very noise (i.e. SNR < 20dB). The conclusion is that, while
some noise can be compensated for, large errors in radiological
sensor measurements result in large errors in blind tracking.

Experiments: For the motion graph experiments, we
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Fig. 12: This figure illustrates how well the motion graph reconstructs a given path. On the left are experiments where a circle
has been fitted to real radiological data, and on the right is the pure simulation result. The goal here is to see the effect of
noise in our radiological measurements, and the robustness of the motion graph as a smoothing operator. (a,f) shows the circle
fitted to the radiation data, and (b,g) shows the reconstructed path with no noise added to the fitted circle. (c,h) shows the
reconstructed path when noise has been added to the input path so that the SNR is 10 dB, and (d,i) shows the reconstructed
path when the SNR is 0dB. The cross correlation where there is maximal pathway overlap is used to measure how well the
motion graph reconstructs the given pathway. (e,j) shows a plot of the cross correlation between the reconstructed path, and
either the fitted circle with added noise (Blue) or the ground truth fitted circle (Red) as SNR changes.

wanted to improve the SNR of the location data found using
radiological measurements. We use the same method of blind
tracking as in section IV, but we used the maximum number
of EJ-309 detectors available to our lab (six) to gather much
more location information. We utilized a Hampel filter (σ = 1)
to identify and replace outliers in the positioning data before
taking the average of the locations. Adding detectors will
results in more location data contributing to the average, im-
proving the SNR of the calculated source location. Conversely,
using fewer detectors will result in fewer location data points
and decrease the SNR of the calculated source location. A
single detector can be used for blind tracking if we assume
the source carrier does not deviate from their pre-occlusion
path, but using 2 detectors is required to track the source
if this assumption does not hold. Despite the resulting SNR
improvement, we need further noise reduction in order for
the blind track to drive a motion graph visualization. This
is because the conversion from counts to distance is affected
by dynamic shielding, as the relative room geometry around
the moving source changes in the local frame of the source.
While overcoming this can be a good direction for future
work, here we constrain the blind track to remain inside the
room boundary and further smooth the data by applying low
parameter shapes (circle, triangle, square etc.) to the fitted
blind tracks behind the obstacle, to improve the quality of
the visualization.

Evaluation: In Fig. 12 we show evaluations of our method

on simulated data. On the left are results for fitting a low
parameter shape to radiological data, and on the right are
results for a perfect circle with no radiological influence, to
evaluate the motion graph approach. In these experiments we
showed that the motion graph reconstruction is sensitive to
noise and that at least 10dB SNR in the radiological counts
are needed to recover the shape of the blind track effectively.
In Fig. 11 and on our website [12] we show qualitative
evaluations of our method on real radiological data from six
detectors, where the person carrying the source walked in a
closed path. The figure shows screenshots and the full video
is available at [12].

VII. CONCLUSION AND LIMITATIONS

Our work, including the previous conference publication
[11], represents a novel approach to fuse depth sensors with
isotropic radiological detectors. We are able to successfully
localize and track a single moving source in 86.67% of
the 15 experiments performed in our lab. We were able to
successfully localize and track two moving sources in 100%
of our 12 simulated experiments, and in 93% of our 12 real
world experiments.

We now sketch proof-of-concept experiments performed at
the Device Assembly facility, where we show the potential of
our method for applications beyond homeland security, such
as tracking in military and energy installations.
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Exp AIS GT Det Cor y/n
1 3 2 2 0.982 Yes
2 4 3 3 0.997 Yes
3 5 4 4 0.951 Yes
4 5 4 4 0.958 Yes
5 2 1 1 0.979 Yes
6 2 1 1 0.997 Yes
7 2 2 2 0.996 Yes
8 3 3 3 0.996 Yes
9 3 3 3 0.990 Yes
10 4 4 4 0.996 Yes
11 4 4 4 0.995 Yes
12 5 5 5 0.998 Yes
13 5 5 5 0.998 Yes

TABLE IV: Single source results from the DAF. AIS stands for
”Actors in Scene” and indicates the number of people present
in the scene during data collection. The trajectory indicated
by GT (Ground Truth) is carrying the radiation source. The
trajectory indicated by Det (Detected Signals) is detected to
be carrying the radiation source. Cor indicated the correlation
between the original radiological signal and the reconstructed
signal. A correct detection is given by ”Yes” in the y/n column.

A. Towards military-grade tracking

We took our experimental setup to the Device Assembly
Facility in Nevada, USA to test with sources beyond our
lab-grade Californium and Pu-Be sources. These lab sources
do not represent the properties of the weapons-grade nuclear
material we would expect a real-life trafficker to be carrying.

We performed experiments with our sensor fusion setup and
captured radiological data from the Device Assembly Facility
(DAF) in Nevada, using a weapons-grade radiological source
and a larger space to perform experiments. Single source data
was collected using the BeRP ball as the radiological source.
Evaluation: The tracking results using the new sources and
more people are in Table IV. Of the 13 single source
experiments, the correct source was located, detected and
tracked correctly in 100 percent of the experiments. This is
an improvement over the results we obtained in the lab. The
improvement is most likely caused by the increased source
strength that comes from using weapons grade nuclear material
and that results in higher SNR.

B. Limitations

The impact of this work is that such a combination can be
used in airports, ports, commercial areas and battlefields with
net security benefits. However, we point out a few limitations
that we hope to address in future work:

Source strength model: In single source tracking we
assumed the source strength λ is constant, and in the blind
tracking experiments we assumed it was modeled with a radial
dependency λ(R). Both of these approximations can break
with scenes that have more interesting geometries than our
laboratory settings, with complex material properties. A future
goal is to learn the scene radiation background prior, from the
scene geometry itself.

NLoS imaging: We are confident that our motion graph-
based NLoS imaging will provide compelling single image
insights into what is happening behind the occluders. As we

show in this paper, for simple shapes and trajectories, the video
results are also insightful. However, for more complex trajec-
tories, we would require depth information prior to occlusion,
as in the original motion capture methods. In particular in this
application it could allow tracking of covert material hand-
overs between traffickers, without visual information, which
is highly attractive. Finally, all our results assume the LIDAR
does view the target at some point. If there is no viewing of
the target at all, new algorithms incorporating NLoS imaging
must be used.

Complex sources: Our algorithm assumes that the sources
are point sources. With different radiological materials, or
a partitioned source in several locations on a person or in
luggage, these assumptions must change with new models.

Static source and switching sources: Our algorithms
require moving radiation sources. A static source becomes part
of the background and is removed by background subtraction.
This may cause problems if people carrying the sources
“drop off” the package. Of course, we can detect when the
radiological counts become constant, and can pick up the
radiological trajectory again as the source starts moving. This
is a fascinating direction for future work.

Failure Cases: Single-source and multi-source tracking fail-
ure cases are caused when two object trajectories are similar.
This happens due to the different selected sampling rate of
radiological (1Hz) and vision (10Hz) sensors. Combined with
Poisson noise in the radiation counts, this explains visual
discrepancies in Fig.2 and Fig.4. Notice that the correct match
still shares trajectory extrema (maxima and minima), which
allows signal correlation to find the answer.

We would like to show in future work that our simplified
forms of the counts equations allow us to know the linear
relationship between radial distance R(t) and detector counts
C(t), and radiological source position. Therefore, we can
apply the principals from Arulampalam, et al [54] and find
that the Kalman filter is the optimal estimation for the tracking
of the moving source
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