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Abstract
This supplementary material has five sections. The first shows the Snell’s win-

dow height is not a factor in our design and can be chosen arbitrarily (if a lenslet is
present, it must at least cover the lenslet). The second discusses, in terms of light-
fields, the types of optics that allow distant scene convolution. The third shows an
imaging example of Snell’s window on our prototype. The fourth explains how
our designs differ from previous work on optical filtering of planar scenes. The
fifth discusses aperture thickness vignetting of a design’s angular support.

1 Snell’s window height
In the paper, we assumed the height of the Snell’s window is exactly the image distance
of the embedded lens. Here we show two derivations, one with this assumption and
one without. Since the two equations we derive are equal, the height of the refractive
material does not matter and we can set it to whatever value we choose.

1.1 Lenslet in a Snell’s window as in the paper
In Figure 1 we show the setup as in the paper. Our approach is to derive an equation
for the value of the exterior angle ω in terms of the exterior unrefracted angles in the
design. We show this equation is identical in the next section, which is derived from
the general case.

Consider the right angles containing θ
′

1, θ
′

2 and θ
′
. The tangents of these angles

are tan(θ
′

1) =
x
′
+ d

2

v , tan(θ
′

1) =
‖x

′
− d2 ‖
v and tan(θ

′
) = v

x′ . They are related by the
equation,

2

tan(θ′)
= tan(θ

′
1)± tan(θ

′
2) (1)

where the sign choice depends on the sign of (x
′ − d

2 ). We substitute Snell’s law
relations n1 sin(θ

′

1) = sin(θ1) and n1 sin(θ
′

2) = sin(θ2), as well as θ2 ∓ θ1 = ω to get,

2 cos(θ)√
n2
1 − cos2 θ

=
sin(θ1 ± ω)√

(n1)2 − sin2(θ1 ± ω)
± sin(θ1)√

(n1)2 − sin2(θ1)
(2)

which is an expression for ω in terms of the exterior, unrefracted angles θ1 and θ.
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Figure 1: Lenslet in a Snell’s Window (as in the paper)

1.2 General Lenslet in a Snell’s window
In Figure 2 shows a lenslet placed in a refractive medium whose index of refractive is
n1. The height of the refractive block is Z. Given this value as well as the viewing
direction , θ and the angle of integration ω, we wish to find the corresponding values
for the lenslet discussion in the paper, θ

′
and ω

′
.

From the 4OO′
B, we can calculate the value of Y = Z

tan(θ′ )
. Similarly we can

get a relation for θ
′
, from the refraction at O

′
, since θ

′
= π

2 − arcsin
sin(π2−θ)

n1
.

From4A′
MM

′
:

tan(θ2′ ) =
d
2 + Y + d

′

2

Z
(3)

and from4PQ′
P

′
:

tan(θ1′ ) =
Y − d

2 −
d
′

2

Z
(4)
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Figure 2: Lenslet in a Snell’s Window (General Case)

Equating the d
′

2 s (which are unknown):

Z tan(θ2′ )−
d

2
− Y = Y − d

2
− Z tan(θ1′ )

2 ∗ Y = Z tan(θ2′ ) + Z tan(θ1′ )

2

tan(θ′)
= tan(θ2′ ) + tan(θ1′ )

2

tan(θ′)
=

sin(θ2)√
(n1)2 − sin2(θ2)

+
sin(θ1)√

(n1)2 − sin2(θ1)

Note that Z, the height of the slab, is out of the equation. This why, in our paper,
we can assume Z to be a value that makes the calculation easier. In addition to the
above equation, we have the the sum of angles for the triangle containing ω and the
points P

′
and M

′
:
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Figure 3: Spherical convolution in terms of light-fields: For a distant scene, spherical
convolution on a planar sensor (a) integrates rays along a line curve in the light-field
(b), suggesting quadratically curved optics [1], such as lenslets.

ω + 90 + θ1 + 90− θ2 = 180

ω = θ2 − θ1

From the previous two equations, we can attempt to solve for θ1 and θ2. From
Snell’s law and the solutions to these, we can obtain θ1′ and θ2′ . Given these, from the
vertex S of4SP ′

M
′
, we get ω

′
= θ2′ − θ1′ .

Now substituting sin(θ2) = sin(θ1+ω), and from Snell’s window, we get the exact
two expressions as in the previous section:

2 cos(θ)√
n21 − cos2 θ

=
sin(θ1 + ω)√

(n1)2 − sin2(θ1 + ω)
+

sin(θ1)√
(n1)2 − sin2(θ1)

and

2 cos(θ)√
n21 − cos2 θ

=
sin(ω − θ1)√

(n1)2 − sin2(ω − θ1)
− sin(θ1)√

(n1)2 − sin2(θ1)

2 The right optics for wide-angle filtering
Figure 3 (a) has a flatland light-field of a distant scene, similar to the light-field di-
agrams in [1]. In spherical convolution, we assign to sensor point P the light-rays
covered by the solid angle ω marked as a linear region in Figure 3 (b). From [1]’s ap-
pendix, this suggests quadratically curved optics. At first glance, it would seem lenses
should be sufficient for this purpose. However, the size of the linear region in the figure
must be constant over different pixels, for correct spherical filtering. Unfortunately, in
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Figure 4: Snell’s window on outdoor scene:

lenses, this region varies. In our CVPR 2011 paper, we have shown that a refractive
slab comes close to approximating the correct filtering. In the future work section of
our PAMI paper submission, we have shown a circular design for wide-angle filtering
that has perfect spherical filtering.

3 An imaging example of Snell’s window
In Fig. 4 we shown an imaging example of Snell’s window (a miniaturized version of
[2]) for an outdoor scene, showing that indeed our setup is able to provide 180 degree
FOV and comparing it to a simple pinhole view of the same scene which has less FOV.

4 Lensless imaging for planar scenes vs. distant scenes

In Fig. 5 (left), l1 = l2 = ‖AB‖ (v+u)u ; the sensor convolves a stretched version of the
template with a planar scene at a distance (v+u). This is the scenario explained in [3].
However, for distant scenes defined on the hemisphere, the solid angle are important.
4ABP1 and 4ABP2 have the same base but different sides, and so the two angular
supports are unequal; ω1 6= ω2.
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5 Aperture thickness vignetting:
In Fig. 5 (right), total occlusion occurs when arctan( t

d
) = arctan( u−t

x− d
2

). If x < d
2
, no vi-

gnetting occurs. Elsewhere, the angular support decreases by ωvig = arccos(
(y

′
+a)2+(a

′
)2−(u−t)2

2(y
′
+a)(a

′
)

)0.5,

where y
′
= ((

t(x− d
2
)2+u2t2

u2 ))0.5, a = (
(u2(u−t)2+((x− d

2
)u2−t(x− d

2
)))2

u2 )0.5 and a
′
=

(4(u−t)2+(2x−d)2)0.5

2
.

Figure 5: Lensless imaging and aperture vignetting
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