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Abstract

Spatial Computing encapsulates all the fundamental infrastructure for the next wave of virtual applications. By
combining the fast moving realms of augmented reality, 3D vision, action recognition and on-demand services, the
future will allow high-skilled gig workers wearing smartglasses to coordinate complex, ordered and time-sensitive
tasks, from modern building and construction to fast response to pandemics. In this article, we contend that
the future growth of Spatial Computing is constrained by questions of privacy and security. This article is
a whitepaper that explains how physics-based depth sensors, under the constraints of blockchain
processing, can provide privacy and security for Spatial Computing.

1. Introduction

Many 3D vision systems localize cameras within a scene using simultaneous localization and mapping (SLAM)
and structure from motion (SfM). Applying such technologies to smartglasses, body-cams, helmet-cams or wear-
able sensors can coordinate humans working together in the coming wave of Web 3.0 commerce. These impacts
include highly skilled gig workers building complex machinery together, coordinating large infrastructure building,
distributing health services across continents and managing scale invariant logistics. The questions of where people
were and what they did can be computed by SfM/SLAM and validated by BlockChain in a decentralized manner.

While spatial computing is crucial, there exists a twin privacy and security hole in the current framework. The
security hole is due to the fact that 3D point clouds obtained from SfM are enormous, and cannot be stored on
the chain. Therefore, chain programs in Ethereum cannot verify computer vision queries (such as recognition of
certain safety actions, say, in a decentralized engineering task) to the blockchain certificate — they can only verify
that some action was performed by an agent earlier at a time claimed by said agent.

Solving this security hole by storing the point clouds at a third party location, and using conventional network
security to query the point clouds for certain actions done in a certain order, creates a privacy problem. This is
because sparse SfM point clouds retain enough information to reveal scene appearance and compromise privacy.
We have previously shown that a privacy attack on SfM data reconstructs color images of the scene from the point
cloud [23], using a cascaded U-Net that takes as input, a 2D multi-channel image of the points rendered from a
specific viewpoint containing point depth.

In this article, we discuss how to retain privacy and security for spatial computing, that will impact complex
group activities. The solution lies in combining two fascinating areas of recent research. The first involves cameras
with novel optics that directly capture geometric information for accurate SLAM in a manner that is irreversible,
and protects privacy information. The second involves storing activity recognition features in the limited (kB)
footprint of a single block, to allow decentralized validation of the activities.
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2. Related Work

The combination of novel depth sensors with deep learning has impacted many fields, from video games to
autonomous cars [30, 13, 4]. Here we briefly cover some of the related work that is creating an infrastructure
widely known as visual computing, where tracking humans in 3D can induce many useful applications.
SfM and SLAM: Augmented reality (AR) and extended version (XR) have spread rapidly, driven by mobile
technologies such as ARCore, ARKit, 3D mapping APIs, and new devices such as HoloLens. These devices have
set the stage for wearable augmentation of groups of humans working together in professional settings, homes and
other sensitive environments. SLAM and SfM allow wearable sensors to estimate their precise pose within the
scene. However, this requires persistent storage of sparse 3D point clouds, which we have shown to be surprisingly
containing enough information to reconstruct detailed comprehensible images of the scene. This suggests that the
persistent point cloud storage poses serious privacy risks that have been widely ignored so far but will become
increasingly relevant as localization services are adopted by a larger user community.
Adaptive depth sensors: LIDAR and other novel depth sensors that are flexible and adaptive in the mea-
surements they make are emerging[29, 5]. These use beam steering modulation for intelligent workplaces [25],
displays [9] and sensing [17]. MEMS mirrors have been used in scanning LIDARs, for highly reflective fiducials
in both fast 3D tracking and VR applications [16, 15]. Galvo mirrors are used with active illumination for light-
transport [8] and seeing around corners [20]. Light curtains are used for flexible, structured light reconstruction [2].
We contend that it is possible for adaptive sensors to capture only what is needed for SfM/SLAM.
Depth Completion: Combining sparse depth measurements with color imagery to fill in depths allows dense
reconstruction [14, 30, 26]. Benchmarks exist [30] and guided upsampling has been used as a proxy for sensor
fusion such as the work that has recently been done for single-photon imagers [12] and flash lidar [7]. In contrast,
we measure sparse low-power LIDAR depth measurements and we seek to flexibly change the sensor capture
characteristics in order to leverage adaptive neural networks such as [13, 4]. We contend that adaptive sensors
can be used such that depth completion does not compromise privacy, and yet allows for accurate SfM/SLAM.
Privacy and security in computer vision. We contend that adaptive depth sensors that allow for SfM/SLAM
but do not allow for upsampling inversion can enable privacy preserving localization. The final piece is to integrate
these technologies with blockchain based decentralized verification. Prior Privacy and Security work in vision
include K-anonymity [28], where stolen keys can only reliably identify k database entries. This idea of deidentifi-
cation has been applied in images [19] and video [1]. In contrast, our sensors will have significant impact in using
smartglasses and wearables in connected health [3] and smart homes [18] to coordinate human group tasks.

3. Learning to BlockSLAM

BlockSLAM consists of two components. The first are physics-based sensors which directly capture geometric
features from the scene in such as way that privacy is preserved, by SfM for SLAM is done accurately. The second
component is an action recognition protocol done over the chain, within the kB limits of a single block. We now
describe each component in detail.

Privacy preserving physics-based SLAM sensors: Conventional SLAM works by using perspective cameras
who images are processed by (mostly) hand-trained feature detectors like SIFT to obtain correspondences across
views. We have shown that neural networks can inverse such sparse data, breaking privacy protections [23].

Instead, we point to physics-based depth sensors, where the optics and imaging components perform the bulk of
the difficult vision processing “off-board”. These sensors remove undesirable information prior to image capture,
and complement existing hardware and software based approaches to privacy preservation, such as deidentification
and cryptography, which can add further levels of protection to these physics-based sensors. We have been a first
mover on these sensors, [10] and follow-up work from others has embedded neural networks in optics layers[6] and
created sensors that directly obtain geometric entities from measurements, such as blocks and planes[11].

A final step is to train such sensors such that the geometric measurements are better for SLAM and not for
recovering imagery. Such features have been discovered for SLAM [27] and we have built a general framework
for deep learning-based privacy preserving encoders [21], which can be applied to a series of optical-based privacy
sensors that we proposed[24, 22].



Action recognition policy over Ethereum: Etheruem allows for contracts between a taskmaster and clients
to make sure (a) tasks are done in the way they were specified and (b) tasks are done in the order they are specified
to activate other contracts. Our assumptions here are that a map of the rigid scene where the activities are taking
place (factory floor, home, outdoor street, etc.) are stored and shared openly. We also assume that a pretrained
action recognition network A is agreed on and an original version Aorig is openly available.

The Aorig is used to compare features across time, to make sure clients are not using the same video clips to
show repeated work. However, the clients may try to fool Aorig with slightly modified versions of the same video
clip passed off as different work cycles.

To combat this, each taskmaster puts out a block which modifies the mother network with randomly selected
weights that are reset to random values, create a modified network Arand. The taskmaster privately retrains an
augmented Aaugment network with a few extra layers to compensate for these randomly selected changed weights.
Each client of the taskmaster uses the randomly modified network Arand and generates output at a small number
of locations and places a few instantiations of the feature vector on the chain. Optimization is impossible since the
client does know the Aaugment network.

Ethereum contracts are written that check if the activities put forward in this way are consistent with the
augmented network Aaugment and the rigid 3D structure of the scene. Every augmented network has a time limit,
and new work cycles have new augmented blocks. We exploit network fragility to make it difficult for clients to
optimize their inputs — i.e. input is restricted vanilla video feed. The entire system is decentralized as no one is
the ultimate decider on the contracts which have been made secure, both with the chain and network fragility.

4. Summary of the Proposed Research Sub-area

Adaptive physics-based sensors for SLAM can allow for reliable and interpretable imaging for spatial comput-
ing. We will soon see novel learning driven imaging systems designed in concert with the chain, which we term
BlockSLAM. The protection of privacy and security in the coming wave of spatial computing will be an important
ethical and social impact of such research.
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