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Abstract—Scanning time-of-flight (TOF) sensors obtain depth
measurements by directing modulated light beams across a scene.
We demonstrate that control of the directional scanning patterns
can enable novel algorithms and applications. Our analysis occurs
entirely in the angular domain and consists of two ideas. First,
we show how to exploit the angular support of the light beam
to improve reconstruction results. Second, we describe how
to control the light beam direction in a way that maximizes
a well-known information theoretic measure. Using these two
ideas, we demonstrate novel applications such as adaptive TOF
sensing, LIDAR zoom, LIDAR edge sensing for gradient-based
reconstruction and energy efficient LIDAR scanning. Our con-
tributions can apply equally to sensors using mechanical, opto-
electronic or MEMS-based approaches to modulate the light
beam, and we show results here on a MEMS mirror-based
LIDAR system. In short, we describe new adaptive directionally
controlled TOF sensing algorithms which can impact mobile
sensing platforms such as robots, wearable devices and IoT nodes.

I. INTRODUCTION

Vision sensors that recover scene geometry have innumer-
able robotic applications. Recently, a new wave of time-of-
flight (TOF) depth sensors have transformed robot perception.
These sensors modulate scene illumination and extract depth
from time-related features in the reflected radiance, such as
phase change or temporal delays. Commercially available TOF
sensors such as the Microsoft Kinect [16] and the Velodyne
Puck [12], have influenced fields such as autonomous cars,
drone surveillance and wearable devices.

Creating TOF sensors for personal drones, VR/AR glasses,
IoT nodes and other miniature platforms would require tran-
scending the energy constraints due to limited battery capacity.
Recent work has addressed some aspects of TOF energy
efficiency with novel illumination encodings. For example,
by synchronizing illumination patterns to match sensor ex-
posures [1], low-power reconstruction can occur for scenes
with significant ambient light. Additionally, spatio-temporal
encodings have been shown to be efficient for both structured
light illumination [30] and TOF illumination as well [29].

In this paper, we demonstrate new efficiencies that are
possible with angular control of a TOF sensor. We demon-
strate this with a single LIDAR beam reflected off a micro-
electromechanical (MEMS) mirror. The voltages that control
the MEMS actuators allow analog (continuous) TOF sensing
angles. As a modulator, MEMS mirrors have well-known
advantages of high-speed and fast response to control [32].
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Our designs provide a new frame work to exploit directional
control for depth sensing for applications relevant to small
robotic platforms. Our experiments use a pulse-based LIDAR,
but the algorithms can easily be extended to continuous wave
systems, as well as any other method for modulation such as
mechanical [12] or opto-electronic [33].

Our contributions are:

• We provide imaging strategies for directional control of
TOF samples, with a particular focus on the angular
support of the sensing beam. We demonstrate, through
real experiments and simulations, that deblurring the mea-
surements using the sensor’s angular support can recover
high-frequency edges, correct non-uniform sampling and
is robust through wide field-of-view (FOV) distortions.

• We discuss a information-theoretic-based control algo-
rithm for the MEMS mirror, in order to decide which
scan to generate, given the previous measurements. By
changing the cost function in the control algorithm, we
can create energy-efficient TOF 3D sensing, where the
algorithm places samples where they are most needed.
Our method optimizes 3D sensing accuracy along with
physical constraints such as range-derived power con-
sumption, motion of objects and free space coverage.

• We demonstrate all of our algorithms on a real sensor,
and show additional applications that are relevant for
small robotic platforms, such as LIDAR zoom, which
allows the controller to investigate interesting regions in
the scene, as well as gradient-based estimation, which
allows a constrained system to place its samples along
edges, and reconstructs the scene post-capture.

II. RELATED WORK

TOF imaging and adaptive optics: Efficient TOF recon-
struction is possible in the face of global illumination by
encoding phase frequencies [11] or through efficient probing
[29]. Synchronization with camera exposure has allowed for
reconstruction in the face of strong ambient light [1]. Tran-
sient imaging is possible using ultra-fast lasers [42], and has
recently been demonstrated using mobile off-the-shelf devices
[14]. We focus on 3D reconstruction and show that directional
control can allow for novel types of efficiencies in sampling
and energy consumption. Finally TOF sensors for long range
sensing through atmosphere uses fast adaptive optics to re-
move atmospheric turbulence effects [3, 41], whereas we target
scene-adaptive sensing for autonomous systems.



Fig. 1. Ray diagram: In (I) we show the co-located ray-diagram of the pulsed LIDAR that is modulated by a MEMS device. In (II) we show our actual
setup, with a Lightware LIDAR and a Mirrorcle MEMS mirror.

Adaptive sampling in 3D models: Adaptive sampling
techniques from signal processing [34] are used extensively for
efficient mesh representations of computer generated scenes
[39, 4]. In robotics and vision, information theoretic ap-
proaches are used to model adaptive 3D sensing for SLAM and
other applications [40, 5, 15]. In this paper, we are interested in
adaptive algorithms for LIDAR sensors that take into account
physical constraints such as the power expanded on far away
objects or on objects moving out of the field-of-view. We
demonstrate the balancing of such efficiency goals with 3D
reconstruction quality.

MEMS mirrors for vision: The speed and control of
MEMS mirrors have been exploited for creating impercep-
tible structured light for futuristic office applications [35]
and interactive-rate glasses-free 3D displays [17]. MEMS
mirror modulated imaging was introduced through reverse
engineering a DLP projector [26] for tasks such as edge
detection and object recognition. Coupling a DLP projector
with a high-speed camera allows for fast structured light and
photometric stereo [20]. Adding a spatial light modulator in
front of the camera allows for dual masks enabling a variety of
applications [30], such as vision in ambient light. In contrast
to these methods, we propose to use angular control to enable
new types of applications for 3D imaging. We are able to
play off angular, spatial and temporal sampling to allow, for
example, increased sampling in regions of interest.

Scanning LIDARs: Most commercially available LIDARs
scan a fixed FOV with mechanical motors, with no directional
control. MEMS modulated LIDARs have been used by NASA
Goddard’s GRSSLi [8], ARL’s Spectroscan system [38] and
Innoluce Inc. [22]. In all these cases, the MEMS mirrors
are run at resonance, while we control the MEMS mirror to
demonstrate novel imaging strategies. MEMS mirror control
is achieved by [19] at Mirrorcle Inc., who track specially
placed highly reflective fiducials in the scene, for both fast 3D
tracking and VR applications [25, 24]. We do not use special
reflective fiducials and utilize sensing algorithms for MEMS
mirror control. Finally, in [37] a MEMS mirror-modulated 3D
sensor was created, with the potential for foveal sensing, but
without the type of adaptive algorithms that we discuss.

III. MEMS-MODULATED LIDAR IMAGING

A MEMS-modulated LIDAR imager has the following
advantages:

• The MEMS mirror’s angular motion is continuous over
its field-of-view (FOV).

• The MEMS mirror can move selectively over angular
regions-of-interest (ROIs).

In this section, we discuss some preliminaries that are
needed to actualize these advantages in imaging algorithms.
We first show how to use the advantage of continuous motion
to remove deblurring artifacts. We then discuss how to use the
advantage of selective motion to enable TOF measurements
that maximize an information theoretic metric.

A. Sensor design and calibration

A MEMS-modulated LIDAR imager consists of a time-of-
flight engine and a MEMS modulator, as in Fig 1(I). The
engine contains a modulated laser transmitter, a receiving
photodetector that measures the return pulses and additional
electronics to calculate the time between transmitted and
received pulses.

To avoid errors due to triangulation, we co-locate the centers
of projection of the transmitter and receiver, as shown in Fig
1(I). Unlike previous efforts, such as [8, 38] we do not co-
locate the fields-of-view of the transmitter and receiver - i.e.
the MEMS mirror is not our transmitter’s optical aperture.
This allows us to avoid expensive and heavy GRIN lenses
to focus the laser onto the MEMS device. Instead we use a
simple, cheap, light-weight short focus thin-lens to defocus the
receiver over the sensor’s FOV. This introduces a directionally
varying map between the time location of the returned pulses’s
peak, and the actual depth. We correct for this with a one-time
calibration, obtained by recovering 36 measurement profiles
across five fronto-parallel calibration planes placed at known
locations, as shown in in Fig 2.

Current configuration specs. In Fig 1(II) we show our
current configuration, where we use an open-source hardware
1.35W Lightware SF02/F LIDAR and a Mirrorcle 3.6mm Al-
coated electrostatic MEMS mirror. The LIDAR operates in
NIR (905nm) and the MEMS response is broad-band up to



Fig. 2. Calibration: In (I) we show a screenshot of the voltages that control the
MEMS mirror pose, as well as an example of the return pulse. We fit a fourth-
order polynomial to the return pulse to detect the extrema location. In (II) we
show how to map this extrema location to depth in cm, by collecting data
across five planes at known depths. This calibration also involves a vignetting
step, to remove effects in the the receiver optics. In (III) we validate our
sensor by reconstructing a fronto-parallel plane at 27cm, showing a standard
deviation of 0.61cm (i.e. almost all points are measured in a ±1.5cm error
range). In the current configuration, the FOV is ≈ 15◦ and the range is 0.5m.

long wave IR (14 µm). As shown in Fig 2(I), voltages from
an oscilloscope control the MEMS mirror direction, and the
synchronized received pulses are inverted.

The short focus lens introduces an interesting trade-off
between FOV, range and accuracy. At the extreme case, with
no lens, our FOV reduces to a single receiving direction with
the full range of the LIDAR (nearly 50m). As we increase the
FOV, and the defocus, the SNR received at the transducer
decreases, reducing range. While we can compensate with
increased gain, this introduces noise and reduces accuracy. In
this paper, we traded-off range for accuracy and FOV, and our
device has a FOV of ≈ 15◦, a range is 0.5m and is set at the
lowest gain (highest SNR).

The Lightware LIDAR sampling rate is 32HZ, which, in

this paper, restricts us to static scenes. We prefer this LIDAR,
despite the low rate, since it allows for raw data capture, en-
abling design-specific calibration. We perform multiple scans
of the static scene, averaging our measurements to improve
accuracy. After the calibration in Fig 2(II) we reconstruct a
plane at 27cm (not in our calibration set) and obtained standard
deviation is 0.61cm (i.e. almost all points are measured in a
±1.5cm error range), as shown in Fig 2(III).

The total weight of our system is approximately 500g;
however most of that weight ( 350g) is contained in a general
purpose oscilloscope and MEMS controller, and it would be
trivial to replace these with simple, dedicated circuits (67g
Lidar, 187g oscilloscope, 74g enclosure, 10g optics and 147g
MEMS controller).

B. Directional control of TOF sensing

Voltages over the MEMS device’s range physically shift
the mirror position to a desired angle, allowing for range
sensing over the direction corresponding to this angle. Let the
function controlling the azimuth be φ(V (t)) and the function
controlling elevation be θ(V (t)), where V is the input voltage
that varies with time t. W.l.o.g, we assume a pulse-based
system, and let the firing rate of the LIDAR/TOF engine be
1
Tf
HZ, or Tf seconds between each pulse. Therefore, the nth

measurement of the sensor happens along the ray direction
given by the angles (θ(V (n Tf )), φ(V (n Tf ))).

The world around a miniature vision sensor can be mod-
eled as a hemisphere of directions (Fig 1(I) center), i.e. the
plenoptic function around the sensor is an environment map
parameterized by the azimuth and elevation angles. Just as
conventional imagers are characterized by their point-spread
function (PSF [9]), miniature vision systems are characterized
by their angular support ω [21]. For miniature active scanning
TOF systems, the angular spread of the laser beam determines
the angular support, which we term as ωlaser in Fig 1.

C. Deblurring TOF measurements over the FOV

Each sensor measurement occurs across the laser’s dot size,
given by the angular support ωlaser. Let us now define the
separation between measurements in angular terms, as ωdiff .
For many commercial LIDARs, such as the Velodyne HDL-
32E, the measurement directions are further apart than the
angular support; i.e. ωdiff ≥ ωlaser.

For our system, the measurement separation ωdiff de-
pends on the differential azimuth-elevation, given by ωdiff =
δφ δθ sin(φ), where φ and θ were defined previously.

MEMS-modulation allows almost any angle inside the sen-
sor’s FOV. Therefore, if the measurements satisfy the inequal-
ity ωdiff ≤ ωlaser, then the measurements are correlated.

Therefore, we have defined the inequality that transforms
our sensor into one identical to fixed resolution imagers. If
this inequality is satisfied, then the rich body of work in
vision using controllable PSFs can be applied here, including
image deblurring [36], refocussing [28], depth sensing [23]
and compressive sensing [7].



Fig. 3. Deblurring using angular support: In (I-III) we show simulations of pulse-based LIDAR with 2% noise on a simple 2D circular scene with a sharp
protrusion. In (Ia-b) the native laser dot size blurs the scene equiangularly, resulting in a banded matrix I(c) which is invertible I(d). In II (a-b) a larger angular
support is created with additional optics, for a sensor with non-uniform angular sampling. The matrix is still invertible, and can be used to resample the scene
uniformly II(c-d). (III) shows the effect of wide-angle optics, modeled from the refractive optics in [21, 43], where deblurring is still successful. Finally (IV)
shows real experiments across a depth edge. Without deblurring, depth measurements are hallucinated across the gap.



Fig. 4. Simulation of adaptive LIDAR: In (a) we show a base scan of a scene with three simple objects. This base scan is tesselated into boxes which are
scored according to some desired metric. In (b) we show a geometric score based on the residual of 2D principal component analysis of points in a box. Note
the background plane has a low score. This score is used with multiple values of cluster number k to generate many region-of-interest (ROI) segmentation,
as in (c). The ROIs globally direct the MEMS mirror to scan longer in regions with a higher average box score. For each ROI segmentation, many candidate
scans are generated by varying scan parameters such as phase, shape, directionality, etc, whose CSQMI scores are shown in (d). We show the highest and
lowest average CSQMI scores of these scans, and the highest scan’s MEMS mirror motions would be the actual trajectories scanned next.

As an example, in Fig 3, we show noisy simulations of a
2D toy scene where a MEMS modulated LIDAR is shown to
be scanning a circular scene with a sharp discontinuity. The
angular support ωlaser is shown to be much larger than the
differential measurement angle ωdiff , and therefore the direct
measurements blur the high frequency information in the sharp
discontinuity in Fig 3 I(b).

Assuming the intensity across the laser dot is uniform, we
can represent the angular support for any particular MEMS
mirror position as an indicator vector along viewing direction.
We concatenate these binary indicator vectors across MEMS
mirror directions over the entire FOV to give a measurement
matrix B shown in Fig 3 I(c). In Fig 3 I(c), the rows of the
matrix B are the indices of different measurements, and the
columns cover discrete viewing directions across the FOV. Any
measurement collects information across the angular support
in this FOV, given as white, and ignores the rest, shown as
black.

Therefore the measured, received pulses at the sensor are
given y = Bz, where z is a vector of the ground-truth received
pulses for an ideal angular support ωlaser. Recovering the z is
a deblurring problem and we apply non-negative least squares
to obtain measurements as shown in Fig 3 I(d), with zero
RMSE error.

We note that the angular support of the sensor is constant
across viewing direction, because it is simply the angular
spread of the laser being reflected off the MEMS mirror. This
results in a near-perfect banded diagonal matrix in Fig 3 I(c),
which is invertible. The angular spread can be affected by
adding laser optics, as shown in Fig 3 (II)a, where the angular
support ωlaser is increased.

This would be necessary if the maximum angular spread
between measurements is much larger than the original angular
support ωlaser, due to non-uniform MEMS mirror control. In
fact, such control occurs naturally with MEMS devices driven
by linear signals, since the MEMS device’s forces follow
Hooke’s law of springs [44]. In Fig 3 II(c) the non-uniform and
blurred measurements result in a banded matrix with varying
band-width. The ground-truth recovered is both accurate and
with the desired uniform density sampling.

Finally, consider the effect of a wide-angle optical system,

such as a fish-eye lens. This would shear the diagonal band
in the matrix, where extreme angles would integrate large
portions of the field of view, which samples closer to the
optical axis would show finer angular resolution. The smooth
motion of the MEMS mirror allows us to invert or redistribute
the samples across the field-of-view, removing wide-angle
distortion. In Fig 3 III(c) we shown an example of such
optics [21, 43] which has been used recently in wide-angle
MEMS modulation. Using the equation from [21], we generate
the viewing-dependent angular support that creates a blurred
version of the scene in Fig 3 III(b) and a non-banded diagonal
matrix in Fig 3 III(c). This matrix is geometrically constructed
to be invertible since all its values as positive and its trace is
non-zero, and allows for recovery of the scene in Fig 3 III(d).

In Fig. 3 (IV) we show a real deblurring result. The scene is
two planes at 27cm and 30cm, where the sensing angles follow
a great arc in the hemisphere of directions, as shown by the
line segment in Fig. 3 (IV)a. We measure the angular support
ωlaser as 0.9◦ as shown in Fig. 3 (IV)b. Without deblurring,
the original measurements result in a smoothed edge, as shown
in Fig. 3 (IV)c-d in blue. We use the damped Richardson-
Lucy blind deconvolution optimization algorithm that takes
our measured angular support as a starting point, as shown in
Fig. 3 (IV)c. This results in a strong edge recovery, with fewer
incorrect measurements, as shown in red in Fig. 3 (IV)c-d.

D. Adaptive TOF sensing in selected ROIs

The MEMS mirror can modulate the LIDAR beam through
a range of smooth trajectories. A unique characteristic of our
setup is that we can adapt this motion to the current set
of scene measurements. We control the MEMS mirror over
the FOV by exploiting strategies used for LIDAR sensing
in robotics [18, 5, 40]. In particular, we first generate a
series of candidate trajectories that conform to any desired
global physical constraints on the sensor. We then select from
these candidates by maximizing a local information theoretic
measure that has had success in active vision for robotics [5].

Candidate trajectories from global physical constraints
To generate a series of candidate trajectories, we encode the
scene into regions where the sensing beam should spend more
time collecting many measurements, and regions where the



Fig. 5. Our smart LIDAR zoom vs. naive LIDAR zoom: By moving the MEMS mirror to certain regions of interest, we can “zoom” or capture more angular
resolution in that desired region. In (a) we show a scene with two objects, and in (b) we show the output of our sensor with equiangular sampling. If the
zoom shifts to the flower, then the naive zoom concentrates the samples in the base scan on the flower exclusively, in (c). On the other hand, our smart zoom
(d) takes measurements outside the zoom region, depending on neighboring object’s complexity and proximity. A naive approach does not visually support
scrolling, since other areas of the scene are blank (e). Our smart zoom allows for scrolling to nearby objects that have some measurements (f). This allows a
for smoother transition when the zoom shifts to that object (g), when compared to the naive zoom.

beam should move quickly, collecting fewer measurements.
We achieve this by clustering the scene into regions of interest
(ROI) based on a desired physical metric. In the applications
section, we show that different metrics can enable, for exam-
ple, scanning the scene under the constraint of limited power.
Similar metrics can be specified for time or scene complexity.

We first tessellate the current scene scan in three dimensions
into bounding boxes Bi(Xc, Yc, Zc, H), which contain all
points (X,Y, Z) in the current scan such that these lie in a
box centered at (Xc, Yc, Zc) with side length given by H . We
require that a metric M be designed such that M(Bi) ∈ R.
We then apply an unsupervised clustering mechanism, such as
k-means, to the set of boxes, where the feature to be clustered
from each box Bi is (M(Bi), Xc, Yc, Zc). Automatically
finding the number of clusters is an open problem in pattern
recognition, and while a variety of methods exist to find an
optimal k, for simplicity we generate candidate trajectories
over a range of cluster centers, from 2 till kmax, which we
leave as a design parameter.

Each cluster of boxes defines a region of interest (ROI) in
the scene. Let us describe the solid angle subtended by the
ROI onto the MEMS mirror, indexed by j as ωj , and let the
average metric of all the boxes in the jth ROI be mj . If there
are n samples across the FOV, then our goal is to create a series
of voltages V (t), such that the angles generated maximize the
following cost function,

max
V (t)

Σ
(n Tf )
i ΣkjF (θ(V (n Tf )), φ(V (n Tf )), ωj ,mj), (1)

where k is the number of ROI clusters in that scan, 1
Tf

is the
firing of the LIDAR/TOF engine and where F is a function
that outputs eαmk if (θ(V (n Tf )), φ(V (n Tf )) lie inside ωk. α

is a user defined weight that controls the impact of the relative
score of the different ROIs on the time spent in each ROI. If
mtotal = Σkjmj , we pick a weight α such that the time spent
in each ROI is proportional to mj

mtotal
.

Note that the above equation does not contain a derivative
term V

′
(t) to enforce smoothness, since we generate only

candidate trajectories that conform to physically realizable
MEMS mirror trajectories, such as sinusoids, triangular wave
functions and raster scans. We generate P such scans Vp(t)
and pick the scan that maximizes the sum of the information
gain from each scanned ray

max
Vp(t),m

I(m|xt) (2)

where xt is the current scan and m is the probabilistic occu-
pancy map of the scene calculated by tessellating the scene
into voxels B

′

i(X
′

c, Y
′

c , Z
′

c, H
′
), and where the probability of

occupancy is given by e−0.5r, where r is the radial distance
between the voxel center and the nearest measured scan point.

We use a form for I(m|xt) in Eq 2 derived from the
Cauchy-Schwarz quadratic mutual information (CSQMI) for
a single laser beam [5]. The expression for CSQMI is repro-
duced here from [5],

log ΣC
l=0wlN (0, 2σ2)

+ log ΠC
i=1(o2i + (1− oi)2)ΣC

j=0ΣC
l=0p(ej)p(el)N (µl − µj , 2σ

2)

− 2 log ΣC
j=0ΣC

l=0p(ej)wlN (µl − µj , 2σ
2)

(3)

where C refers to the number of “cells” — voxels intersected
by the current laser ray direction, N and σ define the mean
and variance of a Gaussian model of the return pulse, oi
is the probability that the ith cell is occupied, p(ej) is the



probability that the jth cell is the first occupied cells (with
all before being unoccupied) and wl is a weight defined by
wl = p2(el)Π

C
j=l+1(o2j+(1−oj)2). Since we have multiple ray

directions in each candidate scan, we aggregate each of these
to produce a single, overall CSQMI value for that candidate
scan and pick the scan with the maximum score.

Simulation example In Fig 4 we show a scene created with
BlenSor [10] with three objects in front of a fronto-parallel
plane. We start with a equi-angular base scan shown in Fig
4(a) since all directions have uniform prior. We tesselate the
scene into boxes B of size 25cm × 25cm × 25cm and use
the residuals of a 2D principal component analysis fit to score
the complexity of each box, as in Fig 4(b). Clustering the
boxes Fig 4(c) creates regions of interest. Varying the number
of clusters and varying scan parameters creates a variety of
candidate, each of which have a CSQMI score Fig 4(d). We
pick the best such score, as shown in Fig 4(e), where it is
contrasted with the worst such scan. Note that, in the best
scan, the neck of the vase is captured in detail and the sphere
is captured equally densely across θ and φ angles.

IV. APPLICATIONS

The imaging framework we have just described allows for
directional control of TOF measurements. Using these ideas
and our MEMS mirror-based LIDAR sensor, we demonstrate
the following novel applications.

A. Smart LIDAR zoom

Optical zoom with a conventional fixed array of detectors
involves changing the field-of-view so that the measurements
are closer together in the angular domain. The key component
of zoom is that new measurements are made, when compared
to the initial image.

Intelligent zoom exists for conventional cameras using pan-
zoom-tilt transformations [6] and light-fields [2]. Here we
demonstrate, for the first time, intelligent LIDAR zoom.

Suppose we are provided with angular supports
of n interesting regions of interest in the scene
(ω1
zoom, ω

2
zoom, ...ω

n
zoom) and a corresponding series of

importance weights (w1, w2, ..., wn). These could come from
another algorithm, say face detection, or from a user giving
high-level commands to the system.

We can use these regions and weights to modify the default
effect of the adaptive LIDAR framework described in Sect
III-D. For example, if a box is contained in ωizoom, then we
can increase the geometric score in the boxes by a factor
determined by the corresponding importance weight wi. This
would increase the amount of time that the sensor spends in
the angular support corresponding to the box.

Smart LIDAR zoom has a clear advantage over naive zoom,
which would place all LIDAR samples exclusively in ROIs.
This because any zoom interface must also offer scrolling. As
is known in computer graphics [27], efficient scrolling requires
caching motion and data near user viewpoints, to allow for fast
rendering for real-time interaction.

Fig. 6. Energy aware adaptive sampling: We augment our directional control
algorithm for adaptive TOF with physical constraints that capture the energy
budget of the system. Here we use two constraints; the inverse fall-off of
light beam intensity and the motion of scene objects w.r.t to the sensor FOV.
In (a) we show simulations of three objects, one of which is give a motion
perpendicular to the optical axis (i.e. leaving the sensor FOV cone). Compared
to the base scan (left), the effiency scan reduces sampling on objects that move
beyond the FOV cone and distant objects, despite their complexity. In (b) we
show a real example using our MEMS mirror-based sensor, where, again,
distant objects are subsampled.

In Fig 5(a) we show a scene with a 3D printed flower
and a bottle. We show a base scan of the scene in Fig 5(b)
with equiangular samples. The user places a zoom region of
interest around the flower. We show that naive zoom directs
the measurements entirely on the flower, with almost zero
measurements around the zoomed-in area.

While we have not implemented real-time scrolling, in Fig
5(c-g) we simulate the effect of scroll in naive zoom, showing
a jarring transition period in the image, since the measure-
ments suddenly appear in a previously blank image. Instead,
our method spreads the samples across the two complex
objects in the scene, allowing for a more meaningful transition
when scrolling is simulated in Fig 5(g) to the dense scan when
the bottle is zoomed. Note, that while the scroll motion is
simulated, all the zoom measurements are real measurements
from our sensor performing directionally varying sampling,
based on the desired zoom area.

B. Energy-aware adaptive sampling

In its current form, the adaptive TOF sensing algorithm only
uses a geometric goodness metric. To augment the algorithm
for mobile-based platforms, we wish to include multiple, say
n, physical constraints into the metric. Therefore we redefine
the metric as M(Bi) ∈ Rn, where Bi is the ith box in the
tessellated current scan.



Fig. 7. Gradient-based reconstruction: Directional control allows a capture of the scene, where samples are only made in high-frequency (i.e. edge) regions
of the scene. In (a) we see the original scan of the two planes, and (b) illustrates their noise levels. In (c), we directly capture only edge regions, placing the
same number of samples as in (a) in high-frequency areas, improving averaging and reducing error. We use these edges with a gradient-based reconstruction
algorithm to recover the meshes in (d). Note that the noise levels are significantly reduced, as shown in (e).

To illustrate the redefined metric, we point out differences
between adaptive sensing when compared to adaptive sampling
literature in image processing and graphics. First, for a given
pulse signal and desired SNR, distant objects require more
pulses. Therefore, geometric complexity must trade-off with
range, and a distant, intricate object may not be sampled
at the required resolution, to save energy. Second, temporal
relevance matters, and a nearby, intricate object that is rapidly
moving out of the field-of-view need not be sampled at high
resolution. Third, unlike virtual scenes, free space must be
sampled periodically, since new obstacles may emerge. Finally,
the sensor’s measurement rate, implies finite samples which
must be shared across all objects, complex or simple.

The issues of free space and infinite samples are already
handled by the adaptive algorithm described in Sect III-D, and
we augment it with two new metrics in M(Bi). The first takes
into account the dissipation of the laser, and scores distant
objects by two-way inverse square reduction in radiance, or
1
Z4 . The second is simply a scaled version of the object’s
velocity λ~v, where λ is 1 if the direction ~v is contained in the
FOV cone of the sensor, and zero otherwise.

Fig. 6 shows both simulated and real scenes, where objects
are at different distances from the sensor. In the simulated
scene, the vase is given a motion away from the sensor’s
visual cone. In the first column we see the base scan of the
scene, where samples are taken equiangularly. Applying the
physical restrictions discussed above and using the adaptive
algorithm described in Sect III-D produces the results in the
second column, where samples are reduced to save energy
consumption and time.

C. Edge sensing for gradient-based reconstruction

Gradient-based methods [31] have had significant impact in
vision, graphics and imaging. Given a base scan of the scene,
we can focus our sensor to place samples only on regions of
high-frequency changes in depth. Placing all our samples in
these regions, over the same time it took to previously scan
the entire scene, produces more robust data since averaging
can reduce noise in these edge regions.

Our goal is to estimate scene depths Z, from a small number
of captured depths Ẑ. A popular solution is to minimize some
norm between the numerically computed real and estimated x

Fig. 8. In (I) we depict the deblurring trade-off in our setup, where increasing
FOV results in reduced SNR and range. In (II) we compare our LIDAR zoom
to other available depth sensors which have fixed acuity.

and y gradients. Formulating this for our scenario,

min
Z
‖dẐ
dx
− dZ

dx
‖2 + ‖dẐ

dy
− dZ

dy
‖2. (4)

Note that the minimization estimates scene depth Z, which
has values outside the sparse locations where we have mea-
surements; i.e. it is a full scene reconstruction. In Fig. 7
we show a real example of gradient-based reconstruction for
a scene with two planes at 27cm and 37cm. We captured
a base scan in Fig. 7(a) of the scene and, using its depth
gradients, captured a new set of measurements along edges
Fig. 7(b). These were used with a widely available gradient
reconstruction method [13] which reduced the corresponding
RSME errors in Fig. 7(e) by a third.

V. LIMITATIONS AND CONCLUSION

Although we show only static scene reconstructions, our
adaptive angular framework impacts any scanning TOF sensor.

Deblurring tradeoff: Given a minimum, required incident
radiance at the photodetector, our sensor range Z and field-
of-view Θ are inversely proportional, Z2 ∝ 1

tan(Θ
2 )

(Fig.
8(I)). Our results have significant scope for improvement in
measurement SNR of the reconstructions, and we will focus
on better optical designs in the future.

System performance: In Fig. 8(II), we compare the ability
to induce desired sample density on targets. For conventional
sensors, as the density increases, the robot-target distance goes
to zero. For our sensor design, a stand-off distance is possible
since we can concentrate samples on the target.

Efficiency/power reduction applications: We will use
energy efficient adaptive sensing for UAVs and other power
constrained robots to place the samples on nearby obstacles
and targets, accruing power savings.
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