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Abstract

Tracking radioactive sources in 3D can impact home-
land security, airport/port surveillance and the military.
Unfortunately, the radiological sensors with the highest
SNR and the lowest price are unidirectional - i.e. they inte-
grate radiation from a sphere of directions centered at the
sensor. We combine such devices with commercially avail-
able depth sensors to break this directional ambiguity. We
first introduce radiological sensing as an application area
for the 3D vision community. Next, we propose a joint cali-
bration algorithm for 3D sensors and unidirectional, or sin-
gle cell, radiological sensors. Finally, we show applications
for tracking people carrying radiological sources.

1. Introduction

Accurate detection and tracking of radioactive materials
has many implications for world security, safety and health.
First, any radioactive material could lead to bodily harm if
misplaced or purposely transported undetected [[§]. Second,
such materials could be used in radiation dispersion devices
(RDDs) which could have a massive economical and so-
cietal cost if detonated near a populous area. Lastly, spe-
cial nuclear materials (SNM), such as uranium and pluto-
nium could potentially be used in atomic weapons. The
volume of SNMs needed for a atomic weapon is less than
1 litre (1000 ¢m?®), and poses a grave proliferation threat.
Therefore the ability to detect and track nuclear materials is
paramount. The seriousness of the situation is further un-
derlined by considering the 2500 (reported) incidents of nu-
clear material incidents and trafficking have been reported
in the IAEA Incident and trafficking database [1].

The typical tool used to detect nuclear material or nu-
clear activities are radiation detectors. These sense energy
(neutrons, gamma radiation etc.) emitted from the radioac-
tive sources. Like other energy sources, the intensity of
these emitted radiations, and their detection, decreases with
increase in distance. Low-cost single cell radiation detec-
tors (on the order of $1000) do not have any angular resolu-
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tion and detect sources all around the device. If correspon-
dences for detections over time can be obtained, then these
radiation detectors provide both the presence of radioactive
sources and information relating to their 3D location.

This view of radioactive sensors as a 3D sensor for nu-
clear sources has made an impact in recent research that
combines vision and radioactive detectors. In these efforts,
visual sensors provide supporting information though satel-
lite imagery, laser mapping and other modalities [21} 26|
25,132, 13, 31]]. However, the fusion of the data in these
scenarios is enabled by expensive, custom built radioactive
sensors with coded apertures that provide enhanced angular
resolution. Such multi-pixel sensors capable of radiological
“imaging” allow easy calibration, but have costs of upwards
of $100,000. Additionally, they coded apertures decrease
distance resolution due to the penetrability and diffusivity
of emitted and transported radiation.

In this paper, we combine low-cost, uni-directional, sin-
gle cell, “non-imaging” radiological sensors with commer-
cially available depth sensors. We propose calibration al-
gorithms and fusion strategies such that radiological source
tracking for moving objects can be achieved at costs which
are orders of magnitude lower that currently possible. The
algorithms that we use are loosely related to near-lighting
models in computer vision [30, [13], where depth cues are
obtained by modeling the inverse square fall-off of light in-
tensity from sources. In our case, we exploit the fall-off of
radioactive strength with increase in distance.

Our contributions are:

e We introduce to the 3D vision community the potential
for applications in the radiological domain. We survey
existing work in the nuclear detection community and
outline a variety of possible research directions. The
key idea here is that radiological sensors can be an-
other fruitful domain for 3D vision research.

e We propose a new calibration algorithm for unidirec-
tional radiological sensors and commercially available
depth sensors. Unlike all previous efforts, our calibra-
tion works with a uni-directional single-cell radiolog-



Table 1. Some basic properties of the four common types of ionizing radiation as compared to visible or IR light photons.

information energy[23] | mass[23] thickness air to | material needed | detection mechanism
carrier reduce intensity | to reduce by 90% | [18]
to half[18] [[L8]]
light photons | few eV 0 ~ km ~ 1075 m Al photo-absorption
sensor
alpha several 6.6¥x10727 [ ~cm m material (gas) ioniza-
MeV kg tion
beta 0-4MeV | 9951075 | ~m ~ mm Al material ionization
kg
gamma ~1MeV |0 ~ 10’s m ~ cm Pb Compton scat-
ter,  photo-electric
absorption
neutron ~1MeV | 1.7%107%" | ~10’sm ~ dm Concrete elastic scatter & ab-
kg sorption on nuclei

ical sensor. We empirically analyze this algorithm’s
noise sensitively and demonstrate calibration results.

e Leveraging our calibration algorithm, we propose a
new algorithm for tracking and detecting a single ra-
diological source carried by one person in a group, by
fusing radiological and depth sensor data.

1.1. Related Work

3D Vision and Radiological Fusion: Recent efforts in
fusing LIDAR and radiological sensors focuses on static
scenes [21} 26, |25] where the sensing gantry is rigidly con-
structed and no free form calibration is proposed. Other
efforts use imaging [32]] (non single cell detector) sensors
created with coded apertures. These are used to average
measurements and reduce noise through a frequency based
approach similar to intrinsic image creation [2]. [3[] using
imaging to recover scene material properties, which provide
a prior for estimating background radiation and compensat-
ing for this. [31]] use a stereo system with a coded aperture
to detect cars. We expect to replicate this type of perfor-
mance at a fraction of the cost by using single cell detectors.

Sensor Fusion: Sensor fusion across multi-spectral,
thermal, acoustic, sonar, LIDAR and other modes has been
widely practiced in 3D vision [[10, 28], and recent efforts us-
ing commercially available depth sensors have proved suc-
cessful [[16]. Data fusion of multi-sensor data for radiation
detection have seen some interesting developments such as
intelligent radiation sensor systems (IRSS) [9]], which are
based on larger numbers of distributed similar or identical
radiation sensors coupled with position data for network ca-
pable to detect and locate radiation source. Statistical mod-
els of distributed sensors have also been investigated to cou-
ple with IRSS style systems [27]. For more exotic fusion of
data one can consider a vast amount of different signatures
and data sets available through different types of sensors. In
the case of cargo scanning one such example is the fusion

of data from radiation sensors and electromagnetic induc-
tion data [20]. While data fusion offers intriguing possible
benefits, it is not always a clear benefit in the signal-to-noise
ratio or multiple distributed sensors [19]]. Further the way
to perform the data fusion especially for the sake of local-
ization can be done in a multitude of ways including but
not limited to: deterministic solutions such as inverse-law
inference [S], Maximum Likelihood Estimator [14]], proba-
bilistic solutions such as 2-dimensional least squares fitting
[15], sequential probability testing[17], and Bayesian pos-
terior estimation [22]]. We present a geometric model for
sensor fusion and analyze a few of its noise characteristics.
Near Lighting: Most computer vision techniques as-
sume distant lighting, such as the sun or the sky. However,
near lighting is present in indoor scenes, night scenes and
underwater situations. In [7] a closed form scene geome-
try estimation is presented for vibrating near light sources.
In [30] Helmbholtz reciprocity was exploited from two dual
stereo views to remove the effect of material properties on
stereo matching. In all these efforts, the inverse square fall-
off from the light-source was used to obtain scene informa-
tion. We exploit the fall-off from the radiological source to
track the source in 3D, with the help of a depth sensor.

2. Background: Radiological Detectors as 3D
Sensors

In contrast to the photons that are detected by 3D vision
sensors, the two types of charged ionizing radiation (alpha
and beta particles) lose energy and slow down in air, often
to centimeter and meter ranges (see Table [[). Therefore
we only consider uncharged radiation in this paper, such as
neutrons and gamma rays, which have mean free paths on
the order of 100-1000 m in air and enable fusion with vision
sensors that operate on similar scales.

The key difference between light and uncharged radi-
ation, one that offers an opportunity for interesting algo-



rithms, is that neutrons and gamma rays have no notion of
full opaqueness and can pass through clothing, lenses, hu-
mans and other materials. This opens up algorithms for de-
tecting and tracking objects that vision sensors cannot see,
such as illicit radiological material. Conversely, the mate-
rials used for shielding against radiological sensing can be
bulky and opaque and may be easily tracked by a vision sen-
sor with line-of-sight. Table [I] details some of the relevant
particle and quanta information for radiation as well as near-
visible-light photons. Note that while some types of radia-
tion can be effectively shielded, others maintain relatively
strong fluxes even after traveling through diverse materials.

2.1. Radiological Sensing and Scene Depths

In the case of detecting radiation the count rate is nor-
mally inversely dependent on the square of the distance,

1

D = Mx,y,2)xe 7T « o2k

ey
Where the A is a function of the size of the radiological
sensor and its internal efficiency, normally referred to as
intrinsic efficiency, (x, y, z) is the 3D location of the source
and R = \/x2 + y? + 22 is the radial distance from source
to sensor.

The intrinsic efficiency can be considered to be a kind of
“nuclear albedo”. Intrinsic efficiency varies depending on
what type of detector is used, as well as which type of ra-
diation is detected in case the radiation detection sensor is
capable of detecting multiple types of radiation. The aspect
of the nuclear material being the source itself means that all
other objects in the environment are “illuminated” or irra-
diated by the source. Most radiation will readily penetrate
regular material, scatter in new directions or be absorbed.
Thus if a radiation source is located near a larger object that
object will in turn scatter some radiation that was initially
emitted in a direction other than the direction of the radia-
tion detector, this can add to the count rate that is observed.
Typical examples of this would be when the source is lo-
cated near a floor or wall. Additionally, even in the absence
of large objects or boundaries in the scene there is still an-
other weak dependence as a function of distance which is
the scattered and absorbed radiation through the medium
between the source and the radiation detector. This depen-
dence is governed by the normally small parameter o that
depends on the medium (normally air).

Recovering the scene geometry (z,y, z) from radiolog-
ical measurements D can be challenging, especially since
A can be scene dependent. Fortunately, in practice, the first
two factors in Eq. (I)) can be approximated as a slow vary-
ing function of radial distance A\(R),
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Figure 1. A calibration target with a radiological source at-
tached: We attach a radiological source on a calibration target
to simultaneously calibrate a single cell radiological sensor and
a depth sensor. We also place a radiological sensor close to the
depth sensor, as a form of approximate co-location. We combine
traditional vision calibration [4]] with radiological calibration to
estimate the location of the second (or other multiple) radiological
sensors with unknown location.

We will use this to track radiological sources in the last
section. However, the radial distance is not useful without
the sensor location. We will now propose how to estimate
the location of both the vision and radiological sensor.

3. Calibration

We propose a method to simultaneously calibrate a depth
sensor and a radiological sensor. The key idea is to at-
tach a radiological beacon or source to the commonly used
checkerboard pattern as in Fig[I] The checkerboard pattern
allows bundle-adjustment based geometric calibration ,
while the depth locations are used to calibrate the radiolog-
ical sensor. Since camera calibration is well understood, we
focus on the latter portion of the calibration.

A single cell radiological sensor consists of a chamber
where neutrons or gamma rays are captured and release
photons. These photons are measured by a single pixel cam-
era. Therefore the model for the radiological sensor that we
use is simply a point location in space, (S, Sy, S;). Since
the neutrons and gamma rays may scatter inside the cham-
ber, this model is approximate.

After processing the radiological counts, we can model
the fall-off measurement for any particular location ¢ of the
calibration pattern as,

; - ; AR
(BL 8.2+ (B8, +(BL-5.)? = 2 = *W0
where B' = (B}, B}, B.) is the location of the radiolog-
ical source at the ith location of the calibration target. We
utilize all the calibration pattern images to first calibrate the

depth sensor using traditional camera calibration [4]. Then,
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Figure 2. Noise: In (I) we study how the error in our algorithm in-
creases with increase in estimates of the intrinsic efficiency A\(R).
We pick a scenario where the groundtruth location and groundtruth
intrinsic efficiencies are known, and add noise to the intrinsic effi-
ciencies. These increase the error linearly. In (II) we show how our
assumption of radially dependent intrinsic efficiency A(R) vs. the
reality of spatially dependent intrinsic efficiency A(z, y, z) affects
our analysis. We reconstruct the co-located sensor (whose ground
truth location is known) with the parabolic fit to A(R), showing
significant errors that can be caused by our model.

we utilize the depth sensor’s projection matrix, along with
the measured depth, to obtain B for every location of the
calibration pattern. We assume that the beacon can be easily
visually distinguished in every image - this is easily possible
during this one-time calibration step.

We consider two cases when proposing our calibration
algorithm. In the first, we assume a situation where the in-
trinsic efficiency A can be assumed to be near constant. This
may happen if the source strength is high and if the scene
geometry is relatively open and free of obstacles. In the
second step, we relax this assumption.

Constant Source Strength: In Eqn. 3| we replace A(R)
with A. The equation appears non-linear in terms of the
four unknowns (S,, Sy, Sz, A) , but we perform a numeri-
cal approximation of the first derivative, to make its solution
linear. Consider pairs of equations obtained from, say, lo-
cations of the calibration pattern at ¢ and j. Subtracting two
such equations eliminates the non-linear terms,

(2B, — 2BJ)S, + (2B}, — 2B})S, (4)

. , 11
i 7 - _
+(2B! —2B))S, + < B; Dj) A= (5

(BL)? — (BI)* + (BL)> — (B})* + (BL)® — (BY)®. (6)
If there are n calibration pattern positions, we obtain (g)
such equations. We build a linear equation Ax = b, where
x are the unknown variables (S, Sy, S-, A), the rows of A
are the known coefficients in Eq. 4| and b are the R.H.S of
Eq. @ given by the depth sensor.
The above equation essentially finds the center point that
explains the radiological fall-off as the calibration pattern is
moved around. Geometrically, this is equivalent to finding

the intersection of multiple spheres in a least-square sense,
each of which are centered at the radiological source. The
intersection of the spheres is the desired, unknown, sensor
location. Similar systems of equations have been solved for
near light photometric stereo [24] in the vision community.
Like those equations, we require at least 4 measurements
and we face the same degenerate cases that occur when A
does not have full rank. This include situations that are well
understood in photometric stereo, such as when the light-
sources lie along a line or a plane. In practice, we have no-
ticed that the randomly selected locations used when mov-
ing a calibration pattern around a camera avoid these cases,
and the matrix is usually full rank and well conditioned.

Spatially-varying Source Strength: The intrinsic effi-
ciency’s dependence on distance A(R) becomes difficult to
solve because this dependence is created by reflections and
scattering in scene geometry. Modeling such radiological
scattering through Monte Carlo based simulations requires
scene properties, which are unknown to us.

To address this challenge, we propose a non-linear opti-
mization with two characteristics. The first takes advantage
of the dependence of the intrinsic efficiency A(R) on the
SZ+ 82+ 52
The second approximates the radial intrinsic efficiency
model A\(R) from measurements given by an additional sin-
gle cell radiological sensor co-located with the depth sen-
sor, as shown in Fig. 1| This sensor is assumed to be at the
origin (S, = 0,5, = 0,5, = 0), and (with the depth
sensor) allows direct measurement samples of the intrin-
sic efficiency A(R) in Eq. E} We fit a parabolic model to
the A(R) samples, essentially learning the spatially varying
source strength for this particular scene.

source location (S5, .Sy, S), since R =

The optimization then proceeds as follows; given a can-
didate sensor location (S, S,,S), we obtain the intrin-
sic efficiency A(R) from the parabolic model. Eq. [4]and
the intrinsic efficiency can be used to calculate the esti-
mated sensor locations (§z7§y,§z) and the error £ =

\/(SZ —8,)2+ (S, — S,)2+ (S. — 5.)2 can be calcu-
lated. We minimize this error to find the best candidate,

using a grid search technique where the sensor location can-
didates occur in a fixed volume region around the origin.

This strategy has two assumptions. The first is that the
geometry of the room will not change significantly after
the calibration procedure. The second is that the estimated
A(R) does not change significantly with the change in view-
point of the radiological source. This second assumption is
not true for a distant radiological source.

Finally emphasize the importance of calibration the sec-
ond radiological sensor, since the co-located vision and ra-
diological sensor by themselves are not optimal for many
scenarios. For example, in radiological tracking in hall-
ways, a vision sensor must be placed at one end of the cor-
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Figure 3. Result: We performed seven experiments, moving the radiological sensor to different positions and estimating its location
using the Kinect depth sensor and the co-located additional radiological source. We measured the ground truth location of the sensor and
compared the error in (I). Our average error is 49.2cm, and compared favorably with randomly guessing the location of the sensor in the
grid search volume around the origin of the system. In (II) and (IIT) we show 3D views and the parabolic fit to the intrinsic efficiency A(R)
for the best and worst results from (I). Both (II) and (II) show the estimated radiological sensor locations - we center spheres on each of
these locations with radii determined by the intrinsic efficiency and the radioactive count, and use these intersecting spheres to estimate the
sensor location. Note that the parabolic fit for the intrinsic efficiency is tighter when the result is better. Although we use our model for
intrinsic efficiency as is, these graphs show promise to reduce the error further in the future with a better model for intrinsic efficiency.

ridor due to field-of-view restrictions, but a 360 degree sen-
sitive radiological sensor can be placed at the center of the
hallway, which allows better detection sensitivity. Our cali-
bration can enable such a system.

3.1. Calibration Results

We demonstrate our calibration algorithm on a real com-
bination of radiological sensors and a depth camera. We
use the Microsoft Kinect V2, which is a 512 x 424 resolu-
tion depth camera that uses infra-red time-of-flight for scene
recovery. The radiological detector is based on the well-
characterized organic liquid EJ-309 compound [11} [12]
with a high flashpoint and low chemical toxicity compared
to many other detector liquids. The liquid is encapsulated
in an alumina cell. It has 75% light output compared to
the reference material Anthracene, a wavelength of maxi-
mum emission of 424 nm, and a time constant of fast de-
cay of 3.5 ns. The detector used was cylindrical in shape,
and of identical dimensions (7.36-by-7.36 cm). The scin-
tillation light was absorbed by a photomultiplier tube (ET-
Enterprises 9821B), and then converted into an electronic
signal with a high gain. The photomultiplier was consis-
tently powered at 1690 V by a remotely controlled power
system, manufactured by CAEN. The voltage was set as
to maintain consistent detector calibration and radiation re-
sponse. An additional second identical detector was used at
the same time to test the data-fusion calibration algorithms
with. The data acquisition system was composed of a 14
bits, 250 MHz, 16-channel digitizer in the form of a Struck
SIS3316 unit. Where each input channel has a significant
buffer memory to acquire large amounts of pulse data and
send it to a data acquisition computer for storage and anal-
ysis. The radiological detection system is sensitive to both
gamma-rays and fast neutrons, and the data analysis pro-

vides details on which pulse was generated by which parti-
cle type, enabling two separate count rates if desired. This
could be an advantage in cases of sources being shielded
by some material. The nature of gamma-ray and neutron
interactions are such that a single shielding material is nor-
mally only able to stop one of the two types of radiation
efficiently. Lead (Pb) and water are efficient shielding ma-
terials for gamma-rays and neutrons respectively.

Noise analysis of calibration algorithm: We per-
formed 7 experiments, moving the radiological sensor to a
variety of locations around the depth camera and using our
calibration process to recover its location in 3D. As shown
in Fig. [I] we used an additional radiological sensor placed
at the Kinect to estimate the intrinsic efficiency. The cali-
bration target used in Fig|[I] fixes the Kinect to be at the ori-
gin, with its intrinsic camera parameters estimated by the
process [4]. All our measurements are in centimeters (cm)
and we searched for candidate locations using a grid search
technique in a 100 x 100 x 100 volume around the origin.

We will first explain the noise characteristics of our al-
gorithm through empirical simulations. We performed ex-
periments shown in Fig. [2| (I), where we analyzed the er-
ror in recovering the position of the co-located radiological
sensor, instead of the second, unknown radiological sensor.
This has the advantage of known ground truth (location at
the origin, since the sensor is co-located with the Kinect
depth sensor) and known intrinsic efficiency A(R), since R
is known, again from the Kinect sensor. With no noise, we
recover the system origin with zero error, as in the first entry
of Fig. 2](I). As gaussian noise increases, the error increases
linearly. This means that scenes that do not obey our as-
sumption of constant intrinsic efficiency will cause linearly
increasing calibration errors.

In the second experiment, shown in Fig. E] (II), we show
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Figure 4. Tracking a single radiological source among multiple objects: We placed a radiological source in the backpack of one of the
people moving around a laboratory scene. We tracked the people using the native Microsoft Kinect V2 tracker (Ia and Ila). We utilized
our calibration algorithm to obtain the location of the sensor placed away from the Kinect. In this case our error was around 20cm from
the ground truth. Using this calibration result, we recovered the radiological source’s trajectory, plotted in Ib and IIb as a dashed line. We
compared this with the trajectories from the Kinect depth tracking and correlated the best match using normalized dot-product distance.

The selected person is highlighted with a red circle. In these two experiments, this was the person carrying the radiological source.

how our assumption of radially dependent intrinsic effi-
ciency A(R) vs. the reality of spatially dependent intrinsic
efficiency A(z, y, z) affects our analysis. We recover the lo-
cation of the co-located sensor (ground truth at the origin)
using not the ground truth intrinsic efficiency values but the
values obtained by fitting a parabola (in the least squares
sense) to the data. In other words, we recover the location
of the co-located sensor when the intrinsic efficiencies have
residual errors due to our model. The large errors show that
our model and assumptions can be off-target, depending on
the scene geometry and its material properties. Addressing
this is one of our goals in the future, and we present the
results of the calibration using this imperfect model.

Calibration results: The results of recovering the lo-
cations of the radiological sensor over seven different ex-
periments are shown in Fig. 3] The ground truth was ob-
tained with careful manual measurements of the location of
the radiological sensor. We are able to obtain the location
of the source with an average error of 49.2cm. While this
may seem prohibitively large by 3D vision standards, we

note that the radiological sensor is a 7.36-by-7.36 cm cylin-
der, and that the A(R) fit may be noisy as shown by the
parabolic fit in Fig. 3] Further, randomly guessing the lo-
cation in the grid search space of 100 x 100 x 100 with a
uniform distribution of sensors gives an error of 118.3cm,
which demonstrates that our calibration algorithm provides
a factor of 2 increase in accuracy. This is the first time that a
single unidirectional radiological source and a depth sensor
have been calibrated, and there are no competing algorithms
to compare against.

4. Application: Tracking a Single Radiological
Source

We address the problem of tracking a single radiolog-
ical source, that is hidden amongst multiple moving tar-
gets. Each target was a person walking around a labora-
tory environment with a backpack. The radiological source
was placed in one of the person’s backpack. We assume
that the targets are visible to the vision sensor, which is
performing visual tracking of salient objects in the scene.



We performed two experiments, as shown in Fig. [ each
lasting approximately one minute. We utilized our calibra-
tion algorithm to obtain the location of the sensor placed
away from the Kinect. The groundtruth sensor location was
(=57em, —59¢m, 0cm) and the calibration estimate was
(=73.49¢m, —38.63cm, —9.5¢cm), showing a 20cm error.

We use the native Microsoft Kinect people tracker, that
can detect two moving persons and up to six static people in
the scene. The native Kinect calibration library allows us to
convert this tracking into a trajectory of the person’s mean
depth in 3D. While the person’s 3D location is not the same
as the exact 3D location of the radiological source on the
person, it proved to be a robust approximation in practice.
In Fig. ] we compare these trajectories to the trajectory ob-
tained from the radiological sensor. This radiological trajec-
tory is based on the radioactive sensor counts, the intrinsic
efficiency model \(R) learned from the co-located source
and the calibration of the radiological location.

In Fig. @] we plot the normalized candidate trajectories
and the radiological source trajectory. We used the dot-
product metric with these normalized trajectories and were
able to localize the depth sensor in the backpack of the per-
son correctly and in both experiments we were able to high-
light this person in the video frames, as shown in the figure.

5. Limitations and Discussion

This is the first effort to fuse the results from a single
unidirectional radiological source and a commercially avail-
able depth sensor. The impact of this work can be low-cost
3D radiological tracking that can be widely used in airports,
commercial areas and battlefield scenarios with positive se-
curity benefits. However, we point out a few limitations that
we hope to address in future work:

Radial efficiency model: The noise analysis shown in
this paper demonstrates that a radial assumption for the “ef-
ficiency” parameter, A, allows noisy recovery of the ra-
diological sensor location. To improve this model, we
must analyze the statistical variation of intrinsic efficiency
across a large range of radioactive sources and scene geom-
etry/material combinations, with the goal of learning a prior
to improve the model. The fact that the Kinect provides a
scene depth estimate could be used for a first order estima-
tion of the effect of scattering on the intrinsic efficiency.

Single source: Our algorithm assumes that the multiple
person trajectories can easily be mapped to a single radio-
logical trajectory. With multiple source, perhaps of different
radiological materials, or even a volumetric source such as
liquid or gas, these assumptions must change.

Static source: Our algorithm can only match the radi-
ological source to closest object trajectory. If the source is
static, no moving object’s trajectory will match the target, as
shown in Fig. 5] Further, every static object in the scene will
match to the radiological trajectory, which results in an am-
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Figure 5. Limitations of our approach: Our approach cannot cur-
rently handle static scenes (top). We also are using the native Mi-
crosoft Kinect tracker (bottom) that results in problems with occlu-
sions. In the future, we can use more sophisticated people tracking
algorithms (such as [6]) to improve the results in these scenarios.

biguity. In presence of a very strong stationary scene source
this adds a significant time-constant background which is
subject to calibration background subtraction on the radio-
logical sensor elevating the noise-level in that scenario.

Occlusions: We also are using the native Microsoft
Kinect tracker that results in problems with occlusions. In
the future, we can use more sophisticated people tracking
algorithms (such as [6]]) to improve the results in these sce-
narios. In Fig. [5] we show tracking when the people did oc-
clude each other. We were only able to localize the source
on the person in a few frames.
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