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Abstract

Tracking radioactive sources in large spaces has appli-
cations for homeland security, airport and port surveillance
as well as military and security uses. Unfortunately, source
localizing radiological detectors are extremely expensive,
and those with low prices are isotropic - i.e. they integrate
radiation from a sphere of directions centered at the sensor.
In this paper, we show that omnidirectional depth sensors
and isotropic radiological detectors have complementary
strengths and can enable many applications. We model the
source strength of radiological sources and integrate these
with LIDAR measurements and a Kalman filter tracker. This
enables applications such as tracking behind walls and de-
tecting multiple radiological sources in the same scene.

1. Introduction

Nuclear material trafficking has the potential to cause se-
rious harm to our national security. The volume of special
nuclear material (SNM) needed to create a nuclear weapon
is less than 1 liter, an amount small enough to easily fit in
a suitcase or on a person. Nuclear trafficking threats are
likely to occur at ports of entry. Radiological material is
dangerous not only because of the risk of nuclear attack
via radiation dispersal device (RDD) or nuclear weapon, but
also because people near the trafficked material can be ex-
posed to high doses of nuclear radiation [6]. The problem
posed by nuclear material trafficking is not contained to a
few isolated incidents, there have been 2500 reported inci-
dents of nuclear material trafficking in the IAEA incident
and trafficking database [1]. The current method of deal-
ing with nuclear trafficking scenarios is to shut down large
areas of the airport, potentially including all flight activity.
This method is both impractical and expensive.

The primary tool to address trafficking are radiation de-
tectors that measure nuclear radiation such as neutrons,
gamma ray photons, etc. The number of radiation detector
events increases with source strength, and decreases with

Figure 1: The senor setup used in this paper, fusing a LI-
DAR with a radiation detector.

the inverse square of the source-detector distance. Inexpen-
sive versions of these detectors ($1,000-$5,000) are prob-
lematic, since they lack the ability to differentiate between
multiple sources, and cannot measure the direction from the
detector to the source.

To overcome the limitations of the inexpensive detec-
tors, radiological researchers have designed and built sys-
tems that fuse data across multiple sensors and include
techniques such as satellite imagery and laser mapping
[19, 24, 23, 33, 3, 32]. The main technique has been to
increase angular resolution by using an array of isotropic ra-
diation detectors with a coded aperture (made of lead slabs).
However, this increases the cost of the system dramatically
~ $100,000 and requires additional calibration. Both of
these reasons prohibit these systems from being deployed to
monitor large areas. On the other hand, reducing the num-
ber of sensor nodes in these systems increases the chances
of occlusion, especially in crowded and visually cluttered
environments such as airports and ports.



Recently, 3D sensor researchers [26] have proposed sys-
tems with a single, isotropic radiological sensor and com-
mercial time-of-flight sensors, such as the Microsoft Kinect,
which is on the order of $100s. The approach is to have
many of these devices around the airport or port, track all
moving objects and computationally discern the location of
the sources by fusing measurements from the radiological
sensor. While some progress has been made, the proposed
calibration in [26] has an error of 100cm (1 meter) in the
relative position of the vision sensor and the radiological
sensor, reducing its applicability to slow moving scenes.

In this paper, we propose a simple strategy to replace a
large number of radiation detectors in the array with an om-
nidirectional depth sensor, as shown in Fig. 1. Our key idea
is to combine the advantages of each sensor type. The radi-
ological sensors, while isotropic, has the advantage of po-
tentially tracking sources through visual obstacles such as
walls. The vision sensor, while requiring line-of-sight, has
a 360° field of view, which solves the calibration problem
efficiently. This eliminates the error caused by calibration
stated in [26] to be the major source for error in vision and
radiation data fusion systems. This will allow the use of far
fewer radiation detectors in the system, reducing the cost of
the system while keeping the angular resolution of the ar-
ray approach. We compromise slightly on the cost of the
vision sensor (in the $10000s, with similar sensors quickly
dropping in cost), while noting that this is far lower than
competing radiological techniques. Our contributions are
the following demonstrations (please see the accompanying
video for a full summary),

e We show that a LIDAR paired with a single radiologi-
cal detector can easily identify a single moving source
in a cluttered and fast moving environment, without
knowing the source strength. We also demonstrate, for
the first time, a simple and robust estimation that can
detect and track multiple radiological sources, each of
unknown strength.

e Building on our technique to detect, track and estimate
source strength, we show occlusion-resistant applica-
tions by combining the vision and radiological mea-
surements in the Kalman filter framework.

e The above first two contributions equal the functional-
ity of arrays of radiological sensors, with only a single
radiological sensor and a 3D vision sensor. By adding
a second radiation detector to our system, we demon-
strate a new capability of tracking a radiation source
through occlusions.

1.1. Related Work

3D Vision and Radiological Sensing: Most efforts
[19, 24, 23] at LIDAR and rad-detector fusion focus on

rigidly constructed gantries in static scenes. Other efforts
use coded apertures (where the random pattern is made of
lead squares) to encode directionality [33] in the isotropic
sensor, to enable stereo reconstruction [32] or to reduce
noise [2]. Inferring material properties, and not just geom-
etry, from the visual measurements allows for estimating
background radiation and compensating for its effects [3].
We show how to replicate these types of capabilities, at a
small fraction of the cost of the coded aperture systems, by
inferring radioactive source strength and radial distance to-
gether, as byproducts of our fusion approach.

Sensor Fusion: Multi-modal sensor platforms allow the
combination of thermal, acoustic, sonar, LIDAR, etc. This
has a long history in 3D vision [8, 30] and recent efforts
have had significant impact [13]. In the radiological sensor
domain, using many rad-detectors have resulted in intelli-
gent radiation sensor systems (IRSS) [7] which are based
on distributed radiation sensors coupled with networked po-
sition data to detect and locate radiation sources, either us-
ing geometry [7, 4], statistical models [28, 17, 11, 12, 21]
or combining rad-detection with electromagnetic induction
data [18]. All of these efforts rely on a large number of
radiation detectors and are prohibitively expensive, or suf-
fer from low efficiency; our goal is to achieve similar re-
sults with just one or two rad-detectors. Closest to our work
is [26] where sensor calibration is presented and its noise
characteristics analyzed. In contrast, we show that an om-
nidirectional LIDAR enables simple user-driven calibration
and allows for results such as tracking multiple sources and
tracking through walls.

Near Lighting: Most computer vision techniques as-
sume distant lighting, such as the sun or the sky. However,
near lighting is present in indoor scenes, night scenes and
underwater situations. Near lighting analysis has a rich his-
tory in vision by exploiting the movement of the sources [5]
or switching source positions [31], and [22] provides a re-
cent survey. In all these efforts, the light-source’s inverse
square fall-off was used to obtain depth cues. We exploit
radiological source fall-off to track the source in 3D and
estimate its source strength, by using an additional, omnidi-
rectional LIDAR sensor.

1.2. Overview

Our hybrid sensor suite produces radiological measure-
ments and 3D vision sensor-based tracking of moving ob-
jects in the scene. Both of these streams of information can
be converted into trajectories, i.e. 1D signals that denote
change in radial distance over time.

The core problem of sensor fusion in our application be-
comes analysis of these signals to find those tracked objects
that carry or contain radioactive material or sources. When
we tease apart the components of the radiological trajectory
given the measured vision trajectories as priors, the prob-



lem is cast as non-blind signal separation. With multiple ra-
diological sources, the problem specifically becomes a non-
negative least squares analysis of the radiological trajectory,
and we discuss heuristics for robust performance in the face
of radiological intereflections, occlusions, noise and radio-
logical background noise.

In practical application, hundreds of people and objects
may be tracked in an airport or port, with only a few, if
any, radiological sources present. This suggests a sparse
signal analysis of the trajectories. In our simulations and
real laboratory experiments, the number of sources were a
large fraction of the total number of tracked objects, and
we found that non-negative least squares with a sparsify-
ing threshold worked well and did better than sparse signal
reconstruction by using L1 optimization (shown in the sup-
plementary material). In all our experiments, we processed
either the raw trajectories or by using a similarity transform
applied to appearance profiles described in [15]. Finally, a
small number of false positives is acceptable when deter-
mining the identity of the trafficker as long as the correct
trajectory is found, i.e. the right person is apprehended.

2. Experimental Setup and Kalman Filtering

We demonstrate our algorithms on a real experimental
setup consisting of isotropic radiological sensors and an
omnidirectional LIDAR, as in Fig. 1. We use the Velodyne
HDL-32E LIDAR which generates 70k points per frame at
10Hz and at 2cm resolution. The main radiation source used
in this paper is a Californium source. A Plutonium Beryl-
lium source was used alongside the Californium source for
the two-source experiments. Both sources are isotropic.

Our rad-detector uses organic liquid compound EJ-309
[9, 10] that has both a high flashpoint and low chemical
toxicity when compared to other detector liquids. A cylin-
drical alumina cell holds the liquid, of dimensions 7.56-by-
7.56 cm (diameter by height). Scintillation in the liquid due
to radioactive energy is absorbed by a photomultiplier tube
(ET-Enterprises 9821B), and then converted into an elec-
tronic signal with high gain. A 14 bit, 250 MHz, 16-channel
digitizer data acquisition system (Struck SIS3316) was used
where each input channel buffer was sufficient to acquire
large amounts of data over a long experiment.

Tracking moving humans is a core problem of computer
vision, and the number of efforts in this space are too nu-
merous to list here; see [25, 27, 20] for good surveys of
the area. We are focusing on situations where people are
carrying radiological sources. To reduce the computational
burden and decrease response times, we project the omnidi-
rectional 3D LIDAR data to a 2D plane and apply Kalman
filter tracking of the resultant blobs [14].

In all the results shown here, this preprocessing step oc-
curs in simulation, on a PC. In Fig 2 we propose a simple ad-
dition to the imaging ASIC circuit for any LIDAR system,
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Figure 2: A high-level schematic diagram of the proposed
circuit that produces top-down 2-D videos by integrating 3-
D LIDAR data along the z-dimension.

that could perform the projection efficiently, in hardware.
Most omnidirectional LIDAR systems recover 3D points of
the scene, depicted in the diagram as the X, Y and Z, which
are dimensions centered at the LIDAR as the origin and with
an arbitrary rotation to the system axes. This circuit simply
applies 2D projection on the Z = 0 plane followed by im-
age discretization. The Z dimension is collapsed simply
by ignoring it (grounding), and the two comparator compo-
nents in the circuit discretize the X and Y space, allowing
multiple LIDAR points to be represented in a single pixel in
the new, grid-like 2D representation of the scene.

Before applying fusion, it is important to locate the ra-
diological sensor in the LIDAR frame of reference. We en-
vision a scenario where a space to be monitored (airport,
docks, etc.) is instrumented with a small number of ex-
pensive radiological sensors and a larger number of cheaper
vision sensors. These differences in number are because vi-
sual sensors are affected by opaque obstacles (e.g. walls)
and require proper placement for full coverage.

Most previous efforts have focused on highly engineered
setups [19, 24, 23] to estimate the relative pose of the LI-
DAR and radiological sensor. In the unstructured domain,
[26] have proposed a calibration technique with a contin-
uous wave time-of-flight (TOF) sensor. Since the method
requires blind estimation of the radiological sensor location
(i.e. self-calibration) errors in the optimization can result in
location errors of the order of 1 meter. In contrast, an omni-
directional 360° vision system such as the LIDAR pictured
in Fig. 1, can, in fact, directly view the radiological sensor.
The only problem is disambiguating the radiological sensor
in the field-of-view. To make the problem easier, we simply
require that the user clicks on the location of the sensor, in
the top-down 2D projected view that we render using the
proposed ASIC. From this point on, we will assume that the
location of the LIDAR is at the origin (0,0, 0) and the lo-
cation of the radiological sensor is also known in the same
frame, (S, Sy, S.).



Unaltered Signal Transformed Signal

Exp | GT Det | Cor ; y/m || Det | Cor é;/n
1 1 1 0.984 | Yes 1 0.840 | Yes
2 1 1 0.986 | Yes 1 0.842 | Yes
3 1 1 0.992 | Yes 1 0.595 | Yes
4 3 3 0.991 | Yes 3 0.686 | Yes
5 1 2 | 0991 | No 2 | 0915 | No
6 3 1 0.993 | No 3 0.846 | Yes
7 2 2 | 0988 | Yes 2 10933 | Yes
8 1 1 0.982 | Yes 1 0.726 | Yes
9 3 3 0.990 | Yes 3 0.815 | Yes
10 3 3 0.994 | Yes 3 0.956 | Yes
11 2 2 0.994 | Yes 2 0.703 | Yes
12 3 3 0.989 | Yes 3 0.838 | Yes
13 3 3 0.994 | Yes 3 0.779 | Yes
14 2 2 | 0993 | Yes 2 | 0.834 | Yes
15 2 2 10999 | Yes 2 | 0985 | Yes

Table 1: Single source detection results both with and with-
out the transformation from [15]. The trajectory indicated
by GT (Ground Truth) is carrying the radiation source. The
trajectory indicated by Det (Detected Signals) is defected to
be carrying the radiation source. Cor indicated the correla-
tion between the original radiological signal and the recon-
structed signal. A correct detection is indicated by a ”Yes”
in the y/n column.

3. Single Source Tracking

In this section, we tackle the problem of finding and
tracking a single moving radiological source. One of the
main issues when tracking such a radiological source is that
the measurements at the radiological sensor (usually called
counts) depend on both the strength of the source (\) and
the source-sensor distance (R), i.e. the count rate is

By %. (D)

A is normally referred to as intrinsic efficiency, and is a
function of the size of the radiological sensor and its in-
ternal efficiency, along with the room geometry, and the
source. (z,y,z) is the 3D location of the source and
R = /(. —5:)%2+ (y—S,)? + ( — 5.)? is the radial
distance from source to radiological sensor. o is the scatter-
ing and absorption of radiation in the medium; in this case,
of air. In practice, the first two factors of Eq. 1 can be ap-
proximated as a slowly varying function of radial distance.
For neutron radiation data the attenuation is only about 1%
per meter of air distance travelled.

Note that this equation is similar to the near-lighting
model [5, 16] in the case where the camera directly im-
ages the source, where the numerator would be the light-
source intensity. The dependence of the “source strength”

C=Xz,y,z)xe 7

Az, y, z) x e~ on the scene is due to radiation’s propen-

sity to penetrate material and scatter about the scene. This
produces different counts, especially if the source is near
the floor or walls. Even in the absence of large objects
or boundaries, there is a weak dependence on scattering
through air, governed by the normally small parameter o.

Of course, the other issue is that the low cost isotropic ra-
diological sensors used in the experiments in this paper have
no angular resolution and cannot tell where in the scene the
detected material is located. Before we explain how to ex-
ploit the omnidirectional LIDAR to solve this problem, we
make one more assumption about how the model for the
“source strength”, or A\(z, y, z) can be made simpler, similar
to previous models such as from [26]. We do approximate
the numerator in Eq. 1 as a constant factor ),

C=Xx % )
Consider a visually cluttered scenario where there is only
a single source in the scene. This is usually the case
in, say, an airport or port, where the chances of mul-
tiple security events happening on the same day in the
same scene are highly unlikely. From the Kalman filter-
based tracking, let us assume we have tracked all ob-
jects in the scene Oq,Os,..0,, throughout the time of
the experiment 7. Each object would have a (z,y)
trajectory in our 2D LIDAR space, for example O,
((z11,y11), (12, ¥12), --.(T17, Y17)), and this can easily be
converted into radial distance from the radiological sensor
(Sz, Sy, S2), for example Oy : (Ry1, R12,...Rir).

Now consider the count measurements Cy,Cs,...,C,
from the radiological sensor itself. These must, of course,
be only dependent on the movement of the person carry-
ing the single source and invariant to the other people in the
scene. Inverting Eq. 2, we can convert these count measure-
ments into radial measurements, modulated by the unknown
source strength A. Therefore the counts Cy,Cs,...,C,
from the rad-detector can be converted into radial distances
(Rradly R'radZa ~'~RradT)a giVeH by Rradi - \/Czl

We can normalize these values by taking the ratio of the
radial measurements with, say, the minimal radial measure-
ment corresponding the closest the source ever reaches the
sensor. This would result in measurements that are inde-
pendent of the source strength A, as R,ormi = %

M

C.

. Similar normalization can also be applied in the

objects tracked by the Kalman filter, for example O,,;p1 :
( R}f“ , lelz - lelT ). These trajectories are now inde-
pendent of source strength and depend only on geometry.
We can then use the cosine distance [29] between the ra-
diological measurements and each of the n Kalman filter
trajectories to give the best match.

Table 1 shows the results from 15 experiments. Each

experiment has a group of two or three people moving in a
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Figure 3: Results from two single-source tracking experiments. The person carrying the radiological source is Person 2.
(top) The detection and tracking of a radiological source during periodic motion. (lower) The detection and tracking of
a radiological source during random motion. (a,d) RGB image of the scene. (b,e) An Image of the LIDAR data’s 2-D
representation. (c,f) A plot of the distance to each person above a plot of the radiation data.

random motion in a laboratory environment. In 13 of those
experiments, we correctly detected the radiological source
holder, giving an accuracy of 86.67%. In Fig. 3 we show
two of the experiments summarized in the table. In each of
these two experiments Person 2 has the source. The final
column shows plots of the trajectories (distance vs. time)
for all three people in the scene, and under that a plot of the
radiation data. There is only one trajectory (Person 2) that
matches radiation data’s waveform.

3.1. Multiple Source Tracking

In many environments, such as nuclear power plants or
nuclear medicine clinics, there may be more than one radi-
ological source being transported. To allow for better mon-
itoring and awareness, it is useful to consider how to track
multiple such sources. The measurements in the radiolog-
ical sensor are linear in the number of counts C' in Eq. 2,
s0, at some time ¢, given two sources ¢ and j, the counts
measured would be,

Ct) = Cilt) + Cyt) = A+ —

R;(t)?

A * 5. 3

1
R;(t)
where R; and RR; are the radial distances from each source
to the radiological sensor. Now consider again, from the
Kalman filter-based tracking, we have tracked all objects in

the scene O, O3, ..0O,, throughout the time of the experi-
ment 7. For each object, we can convert the radial distance
from the radiological sensor (S, Sy,.S), into a series of
inverse-square fall-off terms, O : (R%, R%, R% ).
. . 11 12 1T

If we collect the radiological counts as a T x 1 vector C,
and the radial inverse-square fall-off terms for each object

asa Tl x n matrix O, then

C=0I, “)

where I is an n x 1 vector such that

0 ifz#diand x # j

I(z) = .
Az otherwise

We used non-negative least-squares matrix factoring to
solve Eq. 4, and sparsified I by setting all the values lower
than a user defined threshold to zero, and declaring the
trajectories corresponding to those remaining non-negative
values as the ones with the radiological sources. In prac-
tice, we found that threshold setting was easy, and could
perhaps be automated. We did not need to add additional
constraints to enforce the sparsity of I during its estima-
tion, although these can be used to increase robustness in
the future. In Table 2 we show the first set of simulated
experiments that we ran to test our approach. These were
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Figure 4: Results from two-source tracking experiments. Red and yellow indicate the people carrying radiation sources.
(inset) RGB image of the scene. (a,d) An image of the LIDAR data’s 2-D representation. (b,e) A plot of the distance to each
person and a plot of the radiation data. (c,f) A plot of the radiation signal (orange) and the reconstructed signal (grey).

Unaltered Signal || Transformed Signal
Exp | GT Det. y/r% Det. y/n :
1 2,6 | 2,6 Yes 2,6 Yes
2 2,51 2,5 Yes 2,5 Yes
3 2,6 | 2,6 Yes 2,6 Yes
4 2,6 | 2,6 Yes 2,6 Yes
5 2,51 2,5 Yes 2,5 Yes
6 3,51 3,5 Yes 3,5 Yes
7 3,6 | 3,6 Yes 3,6 Yes
8 3,6 | 3,6 Yes 3,6 Yes
9 3,51| 3,6 No 3,5 Yes
10 [ 2,5] 2,5 Yes 2,5 Yes
11 |12,5] 2,5 Yes 2,3 No
12 [ 2,4 | 2,4 Yes 2,4 Yes
13 | 3,6 3,6 Yes 3,6 Yes
14 | 3,5 3,5 Yes 3,5 Yes
15 | 3,5 3,5 Yes 3,5 Yes

Table 2: Two source detection results using simulated data
for both unaltered and transformed data. Both sources have
the same strength in these simulated data sets. The trajecto-
ries indicated by GT (Ground Truth) are carrying a radiation
source. The trajectories indicated by Det (Detected Signals)
are detected to be carrying a radiation source. A correct de-
tection is indicated by a ”Yes” in the y/n column.

Unaltered Signal Transformed Signal

Exp | GT Det. | Cor. i y/n || Det. | Cor. gy/n
1 1,2 | 1,2 | 0.996 | Yes || 1,2 | 0.598 | Yes
2 2,11 2,1 1] 0995 | Yes 2,1 | 0.579 | Yes
3 1,2 ] 2,1 10993 | Yes || 1,2 | 0.487 | Yes
4 2,31 3,2 1099 | Yes || 2,3 | 0.607 | Yes
5 1,3 ] 3,1 10991 | Yes || 1,3 | 0.334 | Yes
6 2,31 3,2 10994 | Yes || 3,2 | 0.102 | Yes
7 1,3 ] 1,3 1099 | Yes || 1,3 | 0479 | Yes
8 1,3 1,3 10992 | Yes || 1,2 | 0.613 | No
9 1,3 ] 1,3 1099 | Yes || 1,3 | 0461 | Yes
10 | 1,3 ] 1,3 | 0996 | Yes || 1,3 | 0.462 | Yes
11 12,31 2,3 10994 | Yes || 2,3 | 0.603 | Yes
12 12,31 2,3 |10997 | Yes || 2,3 | 0.617 | Yes

Table 3: Two source detection results using real experimen-
tal data both with and without the transformation from [15].
The trajectories indicated by GT (Ground Truth) are car-
rying a radiation source. The trajectories indicated by Det
(Detected Signals) are detected to be carrying a radiation
source. A correct detection is indicated by a ”Yes” in the y/n
column. The first number in both the GT and Det columns
corresponds to the stronger sources and the second number
corresponds to the weaker source.



“real” simulations in the sense that we took real radiological
counts from two actual experiments and added these using
Eq. 3, and attempted to recover the ground-truth. The table
has the ground-truth radiological pair, and the detected pair.
Since this was a simulated setting, we could create groups
of up to 7 “people” using vision trajectories from other ex-
periments, to see how well our method can detect the two
sources in a cluttered environment. A few false positives
are acceptable if every trafficker is correctly identified. This
means that a correct detection can be achieved despite a de-
tected false positive as long as all ground truth trajectories
are detected. In 15 experiments, we achieved only one in-
correct detection, resulting in 93% separation and detection
rate.

We then performed 12 actual experiments using two ra-
diological sources, as shown in Table 3. The table shows,
again the ground-truth radiological pair, and the detected
pair, as well as the reconstructed distance measure from the
cosine distance metric. Running our algorithm with the un-
altered data yielded a detection rate of 100%. Fig. 4 shows
two experiments from the set of 12. Each person wearing
a backpack is carrying a radiation source. The center im-
age shows three vision trajectories, one for each person in
the scene, and the single radiological response (C' in Eq.
3). The final column compares the original radiation sig-
nal shown in orange to the reconstructed signal using the
weighted trajectories (C; and C; in Eq. 3) that have been
inferred from the single radiological response C.

4. Blind Tracking

Radiological sources emit radiation that passes through
materials that are opaque to light. Therefore, there is poten-
tial for tracking radiological sources through opaque obsta-
cles, perhaps even far beyond visual range. However, the
reason this is not done in the radiological community is be-
cause the constant A assumption that we made in the earlier
section does not hold. In other words, the source strength
varies with radial distance, over time ¢, as

O(t) = MR(t)) % ——— =

e = FEO). )

Since counts are now a non-linear combination of source
strength and distance, tracking single sources over long dis-
tances with a single radiological sensor is almost never
done, since it would imply finding F~1(C(t)) or invert-
ing the above equation. In our case, however, we are using
a combination of a radiological sensor and an omnidirec-
tional LIDAR, which can allow us to break the dependency
between source strength A and radial distance R.

Consider a scene with a single moving radiological
source, which we have identified using the methods de-
scribed previously. For a given interval of time, we now

know pairs of (C(t), R(t)), or (F(R(t)), R(t)). This is be-
cause the radial distances R(¢)s are estimated directly by
the LIDAR, and the counts come from the radiological sen-
sor. We can therefore fit a parametric model (always lin-
ear in the results shown) to the (F'(R(t)), R(t)) pairs. This
data-driven approach makes it trivial to invert F', since we
can extrapolate the model to predict the R(t) associated
with any C(¢) in any future time instance ¢.

The only problem remaining is tracking a person with a
radial distance R(¢), since the person could be anywhere in
a circle around the radiological sensor. To break this ambi-
guity, we have two strategies. In the case of short periods
of occlusion, we use the previous velocity vector estimated
by the Kalman filter, and intersect the circle with the ray
defined by this velocity vector and the last detected LIDAR
postion. In the top row of Fig. 5 we show an example of
a person disappearing behind a large cubicle wall. The first
image shows the color frame at the moment of occlusion.
The second image is a 2-D representation of the LIDAR
data before the person is occluded. In the third image, we
intersect the circle (depicted in green) with the motion ray.
This position is fed into the Kalman filter. The final image
shows that the person reappears at the other end of the wall,
with their Kalman filter label intact, i.e. we have tracked the
same person through visual occlusion.

Obviously, the previous method fails if the person’s mo-
tion deviates from the most recent Kalman filter estimated
velocity vector. To go beyond this, we simply add a second
radiological sensor and apply the same modeling algorithm
as discussed earlier. Given the two radiological counts from
each sensor, we can convert them into two estimated radial
distances. These (in 2D) will intersect at two points, and
we use the point closest to the last seen LIDAR position,
followed by Kalman filtering to choose between the two in-
tersection points. In the second row of Fig. 5 we show an
example of a person going behind a wall, and then walking
in a circle. The circular motion happens completely behind
the wall and is not visible by the LIDAR. Yet, using the
LIDAR to estimate the (C(¢), R(t)) map for each sensor al-
low us to predict the location of the person. Notice the two
green circles intersect behind the wall, and the red dots (that
depict the recent trajectory) show a circular path.

5. Conclusion and Limitations

This is the first effort to fuse omnidirectional LIDARs
with isotropic radiological sources. The impact of this work
is that such a combination can be used in airports, ports,
commercial areas and battlefields with net security benefits.
However, we point out a few limitations that we hope to
address in future work:

Source strength model: In single source tracking we
assumed the source strength A is constant, and in the blind
tracking experiments we assumed it was modeled with a ra-



Figure 5: Blind tracking results using a single detector (top) and two detectors (lower). (a,e) RGB image of the scene. (b-d,f-
h) A sequence of images from the 2-D LIDAR data’s representation showing the person being tracked through the occlusion.
The blue circles indicate the unidirectional distance from each detector to the person.

dial dependency A(R). Both of these approximations can
break with scenes that have more interesting geometries
than our laboratory settings, with complex material proper-
ties. A future goal is to learn the scene radiation background
prior, from the LIDAR geometry itself.

Complex sources: Our algorithm assumes that the
sources are solid. With different radiological materials, or
even a volumetric source such as liquid or gas, these as-
sumptions must change.

Static source and switching sources: Our algorithms
require moving radiation sources. A static source becomes
part of the background and is removed by background sub-
traction. This may cause problems if people carrying the
sources “drop off” the package. Of course, we can detect
when the radiological counts become constant, and can pick
up the radiological trajectory again as the source starts mov-
ing. This is a fascinating direction for future work.

Occlusions of people: Our blind tracking results assume
a static, homogeneous obstacle, such as a wall. However,
there are obstacles with severe and dynamically changing
radiation absorption, such as groups of people. In supple-
mentary material we show an experiment tracking a person
as they are occluded by a crowd. Even though our method
allows tracking to function longer than with just the Kalman
filter + LIDAR data, it still fails eventually. Modeling het-

erogeneous obstacles will be addressed in follow-up work.

Transformation Results: The transformation described
in [15] does not appear to help or hinder the outcome of the
detection algorithm in a significant way.

Failure Cases: Single-source and multi-source tracking
failure cases are caused when two object trajectories are
similar. This happens due to the different sampling rate of
radiological (1HZ) and vision (10HZ) sensors. Combined
with Poisson noise in the radiation counts, this explains vi-
sual discrepancies in Fig.3 and Fig.4. Notice that the correct
match still shares trajectory extrema (maxima and minima),
which allows signal correlation to find the answer.
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